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Diffusion everywhere 

Compression?



Overview
1. Background: diffusion 
2. “Generative” lossy compression
3. Recent advances 
4. Discussions



Background: diffusion 
Borrowed from Arnaud Doucet’s NeurIPS 2024 talk 
(https://neurips.cc/virtual/2024/invited-talk/101133) 

https://neurips.cc/virtual/2024/invited-talk/101133


Generative modeling and mass transport
The core problem is to find a map Φ transporting one distribution into another:

X0  ~ Psource  ,                        X1 = Φ(X0 ) ~ Ptarget

● Example: generative modeling: 

Psource  = N (0, I),                   Ptarget  = Pdata . 

● Example: unpaired data-to-data translation / opt. transport:

SAR-to-optical [Wang et al., 2024] Image transfer [Gushchin et al., 2024]



SOTA methods are based on iterative refinement
Direct mapping: 
GAN, VAE, etc. 

ODE/SDE-based mapping: 
diffusion, flow/bridge matching, etc.

Source: https://neurips.cc/virtual/2024/tutorial/99531 

https://neurips.cc/virtual/2024/tutorial/99531


Diffusion
● Forward process:



● Reverse process: time reversal                    with

Diffusion
● Forward process:



Diffusion

Intractable 

● Reverse process: time reversal                    with

● Forward process:



Diffusion

Tweedie’s identity:
Denoiser

● Reverse process: time reversal                    with

● Forward process:



Diffusion

Train by regression:

● Reverse process: time reversal                    with

● Forward process:



Conditional diffusion
● Given (X0, Y) pairs, e.g., (image, text).
● A conditional diffusion model can be trained to approximate          .

(also see classifier (free) guidance [Dhariwal and Nichol 2021, Ho and Salimans 2022]). 

Conditional generative process (score fun → conditional score fun): 

Tweedie’s:



Conditional diffusion

Everything remains the same, except the denoising net receives y as extra input.

Training:









Generative lossy compression
Setup: X   →   Y   →   X̂

data ∈ 𝓧 representation reconstruction ∈ 𝓧

Many possibilities for Y, e.g.,

- Learned embedding [Mentzer et al., 2020], [Yang and Mandt, 2023]
- Text / caption [Lei et al., 2023], [Careil et al., 2023]
- Reconstruction produced by another codec [Hoogeboom et al., 2023], [Ghouse et al., 2023]

sender receiver

01101…



Generative lossy compression
Setup: X   →   Y   →   X̂

We want to optimize this system for: 
● Low distortion                                   

for some distortion function  ρ: 𝓧 × 𝓧 → [0, ∞), e.g. squared error.
● Low bit-rate:                                             (or               if channel simulation).

representationdata ∈ 𝓧 reconstruction ∈ 𝓧

sender receiver

01101…



Generative lossy compression
Setup: X   →   Y   →   X̂

This talk will focus on the case of “perfect realism”, i.e., PX  = PX ̂.

We want to optimize this system for: 
● Low distortion                                   

for some distortion function  ρ: 𝓧 × 𝓧 → [0, ∞), e.g. squared error.
● Low bit-rate:                                             (or               if channel simulation).
● High realism (low divergence): 

representationdata ∈ 𝓧 reconstruction ∈ 𝓧

sender receiver

01101…

[Blau and Michaeli, 2019]



Generative lossy compression: some theory
Rate-distortion-perception theory [Blau and Michaeli, 2019]:

● Realism generally comes at the expense of rate-distortion performance.
● In particular, define the realism-constrained R-D function:

Without common randomness:

R(D, \inf) = R(2D, 0),

“Optimal architecture”

s.t.



Generative lossy compression: some theory
Assuming no common randomness (and squared distortion as before):

● Perfect realism → exactly a two-fold increase in squared error [Yan et al., 2021].

● A common choice for PX|̂Y is to train a conditional generative model for PX|Y .
○ It can be shown that the resulting X̂ satisfies:

■ PX  = PX ̂ , i.e., perfect realism, assuming ideal modeling;
■ Its distortion is bounded by 2 x distortion of the MMSE estimator [Blau and 

Michaeli, 2019; Hoogeboom et al., 2023].

■ If Y is R-D optimal with distortion D, then this architecture is R-D-P optimal with 
perfect realism and distortion 2D [Yan et al., 2021]. 



Assuming no common randomness (and squared distortion as before):

● Perfect realism → exactly a two-fold increase in squared error [Yan et al., 2021].

● A common choice for PX|̂Y is to train a conditional generative model for PX|Y .
○ It can be shown that the resulting X̂ satisfies:

■ PX  = PX ̂ , i.e., perfect realism, assuming ideal modeling;
■ Its distortion is bounded by 2 x distortion of the MMSE estimator [Blau and 

Michaeli, 2019; Hoogeboom et al., 2023].

■ If Y is R-D optimal with distortion D, then this architecture is R-D-P optimal with 
perfect realism and distortion 2D [Yan et al., 2021]. 

Generative lossy compression: some theory
With common randomness: better performance can 
be achieved [Theis and Agustsson, 2021], [Zhang et al., 2021, e.g., 
encoding/transmitting information using diffusion itself 
[Theis et al., 2022].



Relation to inverse-problem solving (“image restoration”)

In image restoration, we assume a fixed 
degradation process X → Y:

● Given Y = y, want to estimate X 
consistent with y while being 
“image-like”/realistic.

X   →  Y  →  X̂
data degradation reconstruction

?



Relation to inverse-problem solving (“image restoration”)

In image restoration, we assume a fixed 
degradation process X → Y:

● Given Y = y, want to estimate X 
consistent with y while being 
“image-like”/realistic.

X   →  Y  →  X̂
data degradation reconstruction

?
● Typically solved by sampling from PX|Y=y or computing E[X|Y=y].
● If X → Y is an existing codec (e.g., JPEG), the problem then 

becomes compression artifact removal (“JPEG restoration”). 



Relation to inverse-problem solving (“image restoration”)

Diffusion-based approaches (2 categories):

1. Conditional diffusion trained on (X, Y) 
pairs, e.g., SRDiff [Li et al., 2021], Palette 
[Saharia et al., 2022].

2. Training-free methods based on a 
diffusion prior, e.g., DDRM [Kawar et al., 

2022], DPS [Chung et al., 2023], etc.

See excellent survey [Daras et al., 2024].

[Saharia et al., 2022]

[Chung et al., 2023]



Recent advances in diffusion-based gen. compression



CDC [Yang and Mandt, 2023]

● Y is a learned quantized embedding. 
● Trained end-to-end on a R-D + realism (conditional diffusion) loss. 



Text + sketch [Lei et al., 2023], PerCO [Careil et al., 2023]

● Y is a text string and (optionally) a color/edge map.
● Can use pre-trained modules, e.g., image captioning model for encoding and 

text-to-image diffusion for decoding.



HFD [Hoogeboom et al., 2023], DIRAC [Ghouse et al., 2023]

● Y is the pixel-space reconstruction produced by another codec.
● Training can be done in two stages:
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HFD [Hoogeboom et al., 2023], DIRAC [Ghouse et al., 2023]

● Y is the pixel-space reconstruction produced by another codec.
● Training can be done in two stages:

1. Train a base compressive autoencoder X → Y on R-D loss. 
2. Train a conditional diffusion model PX|̂Y ≈ PX|Y ; or a flow PY → PX on the 

(Y, X) pairs from stage-1 autoencoder. 



HFD [Hoogeboom et al., 2023], DIRAC [Ghouse et al., 2023]

● Lack of end-to-end training doesn’t limit the R-D-P performance in theory 
[Hoogeboom et al., 2023].

● Gives strong rate-distortion & rate-realism performance, outperforming the 
end-to-end trained baseline [Yand & Mandt, 2023]. 

● Can be applied to other existing codecs for perfect realism.



Communicating information with diffusion
Most existing approaches for generative lossy compression:

● The sender picks a representation Y=y, makes it available to the 
receiver via an auxiliary entropy model, and then 

● The receiver samples X̂|Y=y  ~  PX|̂Y=y with a cond. gen. model. 

Can we accomplish the above with a single diffusion model?



Communicating information with diffusion
Most existing approaches for generative lossy compression:

● The sender picks a representation Y=y, makes it available to the 
receiver via an auxiliary entropy model, and then 

● The receiver samples X̂|Y=y  ~  PX|̂Y=y with a cond. gen. model. 

Can we accomplish the above with a single diffusion model?

If so, this can translate to:

● Lower deployment overhead. 
● Improved R-D-P performance.
● Other desirable features (e.g., progressive/scalable coding).



Lossy compression with unconditional diffusion [Ho et al., 
2020; Theis et al., 2022]

where
● Y is a noisy version of X corrupted by Gaussian noise. 

● Works on top of a pre-trained variational diffusion model [Kingma et al., 2021]; no 
additional training required.



Key ingredient: channel simulation

(One-shot) channel simulation/reverse channel coding [Li 2024, section 2.1]:

Setup: 
● A source of common randomness W, available to both sender and receiver
● Encoder: (X, W) → M ∈ {0,1}*, decoder: (X, M) → Y

Goals:
● Guarantee                   , for a prescribed channel        .
● Minimize the bit-rate, e.g., 
● Minimize the computational complexity. 

X → enc → M → dec → Y
   W 

01011…



Key ingredient: channel simulation
Basic result (one-shot CS with unlimited common randomness) [Li and Anantharam, 2021]: 

where



Key ingredient: channel simulation
Basic result (one-shot CS with unlimited common randomness) [Li and Anantharam, 2021]: 

If we approximate the marginal distribution of Y by      , then the above rate 
bound becomes 

where

where



Key ingredient: channel simulation
Basic result (one-shot CS with unlimited common randomness) [Li and Anantharam, 2021]: 

If we approximate the marginal distribution of Y by      , then the above rate 
bound becomes 

Takeaway: let                                           be the output of a channel simulation / 
reverse channel coding algorithm, then it holds that 

                using                                                 bits/sample (up to a logarithmic overhead)

where

where



Diffusion as a hierarchical latent variable model
A discrete-time diffusion model equivalently optimizes an NELBO:
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A discrete-time diffusion model equivalently optimizes an NELBO:

This suggests a progressive coding algorithm based 
on channel simulation [Ho et al., 2020]:

➢ At time T, simulate
by running                                      ,
costing LT bits.



Diffusion as a hierarchical latent variable model
A discrete-time diffusion model equivalently optimizes an NELBO:

This suggests a progressive coding algorithm based 
on channel simulation [Ho et al., 2020]:

➢ At time T, simulate
by running                                      ,
costing LT bits.

➢ For time t = T-1, T-2, …, 0, 
simulate 

by running                                                          ,
        costing Lt-1  bits.



Diffusion as a hierarchical latent variable model
A discrete-time diffusion model equivalently optimizes an NELBO:

This suggests a progressive coding algorithm based 
on channel simulation [Ho et al., 2020]:
● At time t, the receiver will have simulated

using                bits.

● The receiver can then set               ,
and generate a reconstruction 
using the reverse-process model. 



Diffusion as a hierarchical latent variable model
A discrete-time diffusion model equivalently optimizes an NELBO:

This suggests a progressive coding algorithm based 
on channel simulation [Ho et al., 2020]:
● The expected coding cost of this algorithm 

is exactly equal to the NELBO; thus 

“Variational learning of a discrete-time diffusion model  
≈ end-to-end optimizing for progressive compression”*

*Fine print: the connection is exact in the case of lossless compression with bits-back 
coding (see VDM [Kingma et al., 2021]) ; in lossy compression with channel simulation, 
the NELBO is only a lower bound on the actual coding cost. 



DiffC [Theis et al., 2022]

● First study of the R-D performance of this approach.
● Further optimized the forward (noising) process for R-D performance.
● Results:

➢ DiffC (with optimized noising process + ODE-based reconstruction) 
does better than R(D/2) on Gaussian sources.

                       R(D/2)



DiffC [Theis et al., 2022]

● First study of the R-D performance of this approach.
● Further optimized the forward (noising) process for R-D performance.
● Results:

➢ DiffC (with optimized noising process + ODE-based reconstruction) 
does better than R(D/2) on Gaussian sources.

                       R(D/2)

This is the best possible R-D 
performance under perfect realism 
constraint without common randomness. 



DiffC [Theis et al., 2022]

● Results:
➢ DiffC significantly outperforms BPG and GAN-based HiFiC 

[Mentzer et al., 2020] on ImageNet 64: 



DiffC [Theis et al., 2022]

● Caveat: results are hypothetical; naive channel simulation (e.g., 
PFR runtime ~ exp(bit-rate) [Theis and Ahmed, 2022]) would be too 
expensive.



● Caveat: results are hypothetical; naive channel simulation (e.g., 
PFR runtime ~ exp(bit-rate) [Theis and Ahmed, 2022]) would be too 
expensive.

DiffC [Theis et al., 2022]

Increasing SNR

2^(100) would be too big…



UQDM [Yang et al., 2025]

● We can bypass the difficulty of simulating high-dim Gaussian channels by 
simulating uniform-noise channels instead.

● The uniform channel can be simulated efficiently using Universal (Dithered) 
Quantization [Zamir and Feder, 1992], with optimal expected code length and 
running time.



UQDM [Yang et al., 2025]

Proposed forward process: 
We keep the same reverse-time factorization as in Gaussian diffusion, but 
replace Gaussian distributions with matching uniform distributions:

keep unchanged



UQDM [Yang et al., 2025]

Proposed forward process: 
We keep the same reverse-time factorization as in Gaussian diffusion, but 
replace Gaussian distributions with matching uniform distributions:

keep unchanged

Change from Gaussian to uniform:

where b(t), c(t), and β(t) are specified by the Gaussian noising process, and
we choose quantization width                        to match the variance of Gaussian. 



UQDM [Yang et al., 2025]

Proposed reverse process: 
● In Gaussian diffusion, the reverse process model is chosen as

● We make the same choice, except we additionally broaden it by convolving 
with                       for entropy modeling with UQ [Ballé et al., 2018].

● We also make the reverse-process variance learnable.



UQDM [Yang et al., 2025]

End-to-end trained NELBO v.s. num diffusion steps T:

● Empirically, the NELBO for 
UQDM appears to diverge 
with increasing T; ∃ 
optimal T ≤ 10.

● Finetuning from Gaussian 
diffusion didn’t help.

● Learning reverse-process 
variance helped a lot. 



UQDM [Yang et al., 2025]

Rate-distortion and rate-realism results on ImageNet 64:

DiffC
DiffC, 
T=20

Ours

Fast encoding/decoding (as fast as evaluating NELBO), ~0.1 sec for ImageNet 64



Concurrent work implements DiffC by 
introducing practical workarounds:
● Skipping CS steps when KL is small:

● “Chunking up” dimensions of Zt when KL is 
large [Flamich et al., 2020], and use a GPU 
implementation of PFR.

Competitive results when applied on top of 
latent diffusion models.

LCPD [Vonderfecht and Liu, 2025]

❌
✅



Discussions – design choices
Type of conditioning (choice of Y):
● Text/language is insufficient for preserving spatial information [Lei et al., 2023].
● Conditioning on a pixel-space reconstruction can work well in theory [Yan et al., 

2021], [Hoogeboom et al., 2023], rivaling end-to-end training [Yang & Mandt, 2023].

Pixel-space v.s. latent-space diffusion:
Pixel-space diffusion Latent diffusion

✅Doesn’t require training a separate 
autoencoder; theoretically more optimal.

❌Requires training a separate autoencoder; 
suboptimal in theory.

✅Yields better control over R-D-P tradeoff. ❌Performance limited by the pre-trained 
autoencoder.

❌Computationally more expensive. ✅Computationally cheaper

❌Patch-based reconstruction may not be 
suitable for very low bit-rates.

✅Tends to offer better realism (globally coherent 
reconstructions) at very low rates.



Discussions – open problems
High computational cost.

● SOTA methods still require on the order of ~10 iterative denoising steps.

● Few-step sampling is an active research topic; some solutions: higher-order 
samplers  [Liu 2022, Jolicoeur-Martineau 2021], model distillation [Salimans & Ho 2022], 
consistency models [Song and Dhariwal, 2023], etc.

[Careil et al., 2023]

Kodak



Discussions – open problems
Loss of fine details. 

HFD [Hoogeboom et al., 2023]
Non-linear transform coding 
(PO-ELIC), [He et al., 2022]  Original



Discussions – open problems
Difficulty with evaluation in the very low bit-rate regime.

● As generation performance improves, distortion metrics such as PSNR and 
MS-SSIM (even LPIPS) are no longer informative, nor is FID [Careil et al., 2023].

● Many plausible and realistic reconstructions exist – which is the “best”?



Discussions – open problems
Difficulty with evaluation in the very low bit-rate regime.

● As generation performance improves, distortion metrics such as PSNR and 
MS-SSIM (even LPIPS) are no longer informative, nor is FID [Careil et al., 2023].

● Many plausible and realistic reconstructions exist – which is the “best”?
● Some possible solutions:

○ Human assessment [Mentzer et al., 2020].
○ Measure the preservation of semantic / spatial information, e.g., using CLIP / IoU 

scores [Careil et al., 2023].
○ Alternative distortion/realism metrics, see e.g. Wasserstein distortion [Qiu et al., 

2024].



Discussions – open problems
Effectively communicating information with diffusion.

● Random coding / channel simulation can potentially outperform deterministic 
coding (“compress + refine”) [Theis and Agustsson, 2021], [Theis et al., 2022].

● To achieve this, we can
○ Develop more efficient channel simulation schemes [Vonderfecht and Liu, 2025]. 
○ Consider non-Gaussian channel [Yang et al., 2025] – would be useful to have I-MMSE 

relations analogous to the Gaussian case [Guo et al., 2005; Kong et al., 2023].



Thank you! Q & A
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