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Diffusion everywhere
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Generative Al imagines new protein structures
“FrameDiff” is a computational tool that uses generative Al to craft new
protein structures, with the aim of accelerating drug development and
improving gene therapy.
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Background: diffusion

Borrowed from Arnaud Doucet’s NeurlPS 2024 talk
(https://neurips.cc/virtual/2024/invited-talk/101133)



https://neurips.cc/virtual/2024/invited-talk/101133

Generative modeling and mass transport

The core problem is to find a map @ transporting one distribution into another:

XO - Psource ’ Xl - (D(XO ) - Ptarget
e Example: generative modeling:
source - W(O’ I)’ Ptarget - Pdata )

e Example: unpaired data-to-data translation / opt. transport:

S

Optical _i

SAR-to-optical [Wang et al., 2024] Image transfer [Gushchin et al., 2024]



SOTA methods are based on iterative refinement

Direct mapping: ODE/SDE-based mapping:
GAN, VAE, etc. diffusion, flow/bridge matching, etc.
Xl - (I)(XO) (Xt)OStsl Xivn < (I)t+h|tt(Xt)

Source: https://neurips.cc/virtual/2024/tutorial/99531



https://neurips.cc/virtual/2024/tutorial/99531

Diffusion
e Forward process: dX; = —%Xtdt + dB;




Diffusion

e Forward process: dX,; = —lXtdt + dB;
Xo

Real data Noise sample

e Reverse process: time reversal Xt te 0,1] with Xt X1 ¢
X1 = Xo Xo = X1

Synthetlc data Noise sample

dXt { Xtdt + VIngl t Xt }dt + dBt




Diffusion

e Forward process: dX,; = —%Xtdt + dB;
Xo

Real data

Noise sample

e Reverse process: time reversal Xt te[o 1] with Xt X1 ¢
X1 = Xo Xo = X1

Synthetlc data Noise sample

Intractable



Diffusion

e Forward process:
Xo

Real data

|
dXy = =5 Xedi +dB;

e Reverse process: time reversal Xt t €[0,1] with Xt

X1 =X,

SYnthenc data

dX, =

Tweedie’s identity:

X1

Noise sample

X1t

XO_X]_

Noise sample

D

{5 Xtdt+Vlogp1 +(Xy) }dt+dBt

% log pe(x) =

02 (041

t

_ xt)
Denoiser



Diffusion

e Forward process: dX,; = —lXtdt + d By
Xo 2 A1

Real data Noise sample

e Reverse process: time reversal Xt te 0,1] with Xt X1 ¢
X1 = Xo Xo = X1

Synthetlc data Noise sample

-<———

dXt { Xtdt + VIngl t Xt }dt + dBt
Train by regression: [X0|Xt = x| ~ To(z1), To = al’gmmE[HXoaﬁbe(Xt)H ]




Conditional diffusion

e Given (X, Y) pairs, e.g., (image, text).
e A conditional diffusion model can be trained to approximate Px,y.
(also see classifier (free) guidance [Dhariwal and Nichol 2021, Ho and Salimans 2022]).

Conditional generative process (score fun — conditional score fun):

_ 1 _ _ :
dX; = {§Xtdt + Vlog p1—¢+(X¢|y) }dt + dB;

. 1
Tweedie’s: Vlogpt(gjtky) — p(atE[XO‘Xt =x:,Y = y] — CUt)
L



Conditional diffusion
Training: E[Xo| X = 2¢,Y = y] = Zo(2,y), L9 = arg I%%QHE[HXO, b0 (X1, Y)|]

Everything remains the same, except the denoising net receives y as extra input.

X Y Denoised Xo

— 0 Xo + o N oot Output MSE
0g




Generalizing Diffusion Models
(Albergo et al. 2022, Lipman et al. 2022, Liu et al. 2022)

Public

® Y X ~Y
g Po, 241 p1 non-Markov

e Deterministic interpolation path
( : é X
X;=(1-t) Xo+tX; = dX; = (X1 — Xo)dt = L dt

1—-1¢

samples from pg

samples from p;

24



Generalizing Diffusion Models

(Peluchetti 2021, Albergo et al. 2022, Liu et al. 2022)

° XONPOaXl NplazNN(O)I)

Public

non-Markov noise
e Stochastic interpolation path
X
X;=(1—-t) Xo+t X1+ \/et(l—t)Z — dX; =@1 t tdt+

Brownian Bridge

R
. \\\ /
\

0 N

7
[\
\“u R
N\

= /
A7

samples from pg

samples from p;
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M a rkOV| an P rOJ eCt| ON (Gyéngy, 1986) Removing the dependency on the future

Public

e For Xo ~ po, X1 ~p1

Markov
non-Markov
X E[X; | X:)— Xi
dX; = dt + \/EdBt and dX; = dt + \/EdBt

1—t J —t

R~ )2’9* (t,X:) Denoiser
: ' . . A
[Both ODE/SDE have same marginals! J 0" = argmin E[|| X1 — Xa(¢, Xt)||2]

e If e > (- Bridge Matching (Peluchetti 2021, Albergo et al. 2022, Liu et al. 2022)
e If e =0 - Flow Matching (Lipman et al. 2022, Liu et al. 2022, DelBracio et al. 2023)
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Generative lossy compression

sender b receivelg
Setup: Y|X Ry
i X 2 ¥ —
AN NN

data € X representation reconstruction € X

Many possibilities for Y, e.qg.,

- Learned embedding [Mentzer et al., 2020], [Yang and Mandt, 2023]
- Text / caption [Lei et al., 2023], [Careil et al., 2023]
- Reconstruction produced by another codec [Hoogeboom et al., 2023], [Ghouse et al., 2023]



Generative lossy compression

sender b receivelg
Setup: Y|X Ry
i X 2 ¥ —
AN NN

data € X representation reconstruction € X

" ke

We want to optimize this system for:
e Low distortion E[p(X, X))
for some distortion function p: X x X — [0, «), e.g. squared error.
e Low bit-rate: H[Y]| (or I(X,Y)if channel simulation).



Generative lossy compression

sender b receivelg
Setup: Y|X Ry
i X 2 ¥ —
AN NN

data € X representation reconstruction € X

" ke

We want to optimize this system for:

e Low distortion E[p(X, X)]
for some distortion function p: X x X — [0, «), e.g. squared error.
e Low bit-rate: H[Y]| (or I(X,Y)if channel simulation).

e High realism (low divergence): d(Px, Pg) [Blauand Michael, 2019]

This talk will focus on the case of “perfect realism”, i.e., P, =P .



Generative lossy compression: some theory

Rate-distortion-perception theory [Blau and Michaeli, 2019]:

e Realism generally comes at the expense of rate-distortion performance.
e In particular, define the realism-constrained R-D function:

R(D,P) = min I(X, X)

- - = =R(D, 00) - Shannon’s
PX|X RN R(D/2,00) - Bound

A N —— R(D,0) - Perfect quality
st E[p(X,X)] < D,d(Px,Py) < P ~

Rate R

Theorem 2 When using the squared-error distortion, theé
function R(-,0) (rate-distortion at perfect perceptual qual-:
. ity) is bounded by :

Distortion D

: Figure 5. Illustration of Theorem 2. When using the MSE distor-

: R(D’ 0) < R( %D’ oo) 2 (8) tion, the .rate-distoFtiog curve for compres:sion wi’fh peffect percep-

e . tualquality (blue) is higher than Shannon’s rate-distortion function
(black dashed line) but is necessarily lower than the 2x scaled
version of Shannon’s function (dotted line).



Generative lossy compression: some theory

Assuming no common randomness (and squared distortion as before):

e Perfect realism — exactly a two-fold increase in squared error [Yan et al., 2021].
1

e A common choice for P)qyis to train a conditional generative model for P)qY'
o It can be shown that the resulting X satisfies:
m P _=P_,ie, perfect realism, assuming ideal modeling;

m Its distortion is bounded by 2 x distortion of the MMSE estimator [Blau and
Michaeli, 2019; Hoogeboom et al., 2023].

E[| X — X|?] < 2B[|X — Xumsel’]
m If Yis R-D optimal with distortion D, then this architecture is R-D-P optimal with
perfect realism and distortion 2D [Yan et al., 2021].



Generative lossy compression: some theory

/With common randomness: better performance can
be achieved [Theis and Agustsson, 2021], [Zhang et al., 2021, €.9.,
encoding/transmitting information using diffusion itself
[Theis et al., 2022].

N

/

E[|X — X||?] < 2E[| X — Xmsel]



Relation to inverse-problem solving (“image restoration”)

In image restoration, we assume a fixed N

degradation process X — Y- X — Y - X
S T o

data degradation reconstruction

e Given Y=y, want to estimate X m
consistent with y while being

“image-like”/realistic.




Relation to inverse-problem solving (‘image restoration”)

In image restoration, we assume a fixed N

degradation process X — Y- X — Y - X
S T o

data degradation reconstruction

R

e Given Y=y, want to estimate X E
consistent with y while being

“image-like”/realistic.

e Typically solved by sampling from PX|Y=y or computing E[X]|Y=y].
e If X— Yis an existing codec (e.g., JPEG), the problem then
becomes compression artifact removal (“JPEG restoration”).



Relation to inverse-problem solving (‘image restoration”)

Input Output Original

Diffusion-based approaches (2 categories):

1. Conditional diffusion trained on (X, Y)
pairs, e.g., SRDIff [Li et al., 2021], Palette
[Saharia et al., 2022].

2. Training-free methods based on a
diffusion prior, e.g., DDRM [Kawar et al.,

2022], DPS [Chung et al., 2023], etc.

See excellent survey [Daras et al., 2024].

[Chung et al., 2023]



Recent advances in diffusion-based gen. compression



CDC [Yang and Mandt, 2023]

X

e Y is alearned quantized embedding.
e Trained end-to-end on a R-D + realism (conditional diffusion) loss.



Text + sketch (eietal, 2023, PerCO (careil et al., 2023

X Y X

\U0001
F1E6ku

rudcapebrt

e Y is a text string and (optionally) a color/edge map.
e (Can use pre-trained modules, e.g., image captioning model for encoding and
text-to-image diffusion for decoding.



H FD [Hoogeboom et al., 2023], D I RAC [Ghouse et al., 2023]
X

Enc Dec
Network Network

e Y is the pixel-space reconstruction produced by another codec.
e Training can be done in two stages:




H FD [Hoogeboom et al., 2023], D I RAC [Ghouse et al., 2023]
X

Enc Dec
Network Network

e Y is the pixel-space reconstruction produced by another codec.
e Training can be done in two stages:
1. Train a base compressive autoencoder X — Y on R-D loss.




H FD [Hoogeboom et al., 2023], D I RAC [Ghouse et al., 2023]
X

Enc Dec
Network Network

e Y is the pixel-space reconstruction produced by another codec.
e Training can be done in two stages:

2. Train a conditional diffusion model PXTY e P)qy; or a flow PY — PX on the

(Y, X) pairs from stage-1 autoencoder.



H FD [Hoogeboom et al., 2023], D I RAC [Ghouse et al., 2023]
X

Enc Dec
Network Network

e Lack of end-to-end training doesn’t limit the R-D-P performance in theory
[Hoogeboom et al., 2023].

e Gives strong rate-distortion & rate-realism performance, outperforming the
end-to-end trained baseline [Yand & Mandt, 2023].

e Can be applied to other existing codecs for perfect realism.




Communicating information with diffusion

Most existing approaches for generative lossy compression:

‘ %
U :
¢

receiver via an auxiliary entropy model, and then

X
® The sender picks a representation Yzy, makes it available to the E[

® The receiver samples X| Y=y ~ PX[Y=y with a cond. gen. model.

Can we accomplish the above with a single diffusion model? X




Communicating information with diffusion

Most existing approaches for generative lossy compression:

receiver via an auxiliary entropy model, and then

X
® The sender picks a representation Yzy, makes it available to the E[ |

® The receiver samples X| Y=y ~ PX[Y=y with a cond. gen. model.

Can we accomplish the above with a single diffusion model? X

If so, this can translate to: E y 3

e Lower deployment overhead.
e Improved R-D-P performance.
e Other desirable features (e.g., progressive/scalable coding).




Lossy compression with unconditional diffusion oeta.

2020; Theis et al., 2022]

e Y is a noisy version of X corrupted by Gaussian noise.
Y =7, =o0;X +0;N where N ~ N(0,1)

e Works on top of a pre-trained variational diffusion model [Kingma et al., 2021]; no
additional training required.



Key ingredient: channel simulation

(One-shot) channel simulation/reverse channel coding [Li 2024, section 2.1]:

hWﬁ
X —>enc—> M —> dec— Y

01011...
Setup:

e A source of common randomness ¥, available to both sender and receiver
e Encoder: (X, W) —> M € {0,1}*, decoder: (X, M) - Y

Goals:
e Guarantee Y|X ~ Py x, for a prescribed channel Fv|x.
e Minimize the bit-rate, e.g., E[| M ]
e Minimize the computational complexity.



Key ingredient: channel simulation

Basic result (one-shot CS with unlimited common randomness) [Li and Anantharam, 2021].
I <minE[|M|] <T+4logy(I+1)+5
where I :=I1(X,Y)



Key ingredient: channel simulation

Basic result (one-shot CS with unlimited common randomness) [Li and Anantharam, 2021]:
I <minE[|M|] <T+4logy(I+1)+5
where I :=I1(X,Y)
If we approximate the marginal distribution of ¥ by PZ, then the above rate

bound becomes I° < minE[|M|] < I? + log, (I’ + 1) + 5
where E;-py [KL(Py|x=;||Py)] :=1° > I



Key ingredient: channel simulation

Basic result (one-shot CS with unlimited common randomness) [Li and Anantharam, 2021]:
I <minE[|M|] <T+4logy(I+1)+5
where I :=I1(X,Y)
If we approximate the marginal distribution of ¥ by PZ, then the above rate

bound becomes I° < minE[|M|] < I? + log, (I’ + 1) + 5
where E;-py [KL(Py|x=;||Py)] :=1° > I

Takeaway: let Y = RCC(Py,x, PY, X)be the output of a channel simulation /
reverse channel coding algorithm, then it holds that

Y|X ~ PY|X USing ~ ECENPX [KL(PY|X=:B HP1€>] bitS/Sample (up to a logarithmic overhead)




Diffusion as a hierarchical latent variable model

A discrete-time diffusion model equivalently optimizes an NELBO:
T

~logps(x) < KL(q(erlo)p(=r)) + 3 EIKL(g(z1-1]71, @) [po(z1-1|24))] + E[~ log p(x]0)]

t=1
==L~ =Ly ::Lm|z0




Diffusion as a hierarchical latent variable model

A discrete-time diffusion model equivalently optimizes an NELBO:
T

~logps(x) < KL(q(erlo)p(=r)) + 3 EIKL(g(z1-1]71, @) [po(z1-1|24))] + E[~ log p(x]0)]

t=1
==L~ =Ly ::chz|z0

This suggests a progressive coding algorithm bagee
on channel simulation [Ho et al., 2020]: :

> Attime 7, simulate Zr|X ~ q(27|X)

by running RCC(q(2r|X), p(2r), X
costing L. bits.




Diffusion as a hierarchical latent variable model

A discrete-time diffusion model equivalently optimizes an NELBO:
T

—logpg(z) < KL(g(zr|@)p(er)) + Y EKL(q(zt-1]20, 2)|[pe(2e-12))] + [~ log p(x]0)]

t=1
:ZLT 2=Lt_1

2:Lm|z0

This suggests a progressive coding algorithm bages
on channel simulation [Ho et al., 2020]:

> Attime 7, simulate Zr|X ~ q(z7|X)
by running RCC(q(zr|X), p(27), X
costing L. bits.

> Fortimer=17-1,7-2, ...,0,
S|mU|ate Zt_1|Zt,X ~ q<Zt_1|Zt,X)

by running RCC(q(zt-11Z¢, X ), p(2t-112+), (Ze, X)),
costing L, bits.

po(2t-12¢)

O -O—O

Z. Zy X




Diffusion as a hierarchical latent variable model

A discrete-time diffusion model equivalently optimizes an NELBO:

—log py(x )<KL( (zT|ac) 2r)) —I—ZE[KL (q(ze— 1‘Zt7 ) ||po(2i— 1’Zt))]+]E[ logp(x]zo)l

t=1

This suggests a progressive coding algorithm ba
on channel simulation [Ho et al., 2020]:

e Attime ¢, the receiver will have simulated
Zt,Zt+17-- Zr|X ~ q(z.7|X)

using Z i bits.

s=t—1

e Thereceivercanthenset Y = 7, ,
and generate a reconstruction X|Y ~ Px\z,
using the reverse-process model.




Diffusion as a hierarchical latent variable model

A discrete-time diffusion model equivalently optimizes an NELBO:
T

—logpg(z) < KL(g(zr|@)p(er)) + Y EKL(q(zt-1]20, 2)|[pe(2e-12))] + [~ log p(x]0)]

t=1
==L~ =Ly ::L:c|z0

This suggests a progressive coding algorithm bages
on channel simulation [Ho et al., 2020]:

e The expected coding cost of this algorithm
is exactly equal to the NELBO; thus o

“Variational learning of a discrete-time diffusion model N "
=~ end-to-end optimizing for progressive compression™ ) ----- +©—>©—»Q S »O—.O
Zr 471 Ziyn 4y Ly Zy X

*Fine print: the connection is exact in the case of lossless compression with bits-back
coding (see VDM [Kingma et al., 2021]) ; in lossy compression with channel simulation,
the NELBO is only a lower bound on the actual coding cost.



DiffC [Theis et al., 2022]

e First study of the R-D performance of this approach.
e Further optimized the forward (noising) process for R-D performance.
e Results:
> DiffC (with optimized noising process + ODE-based reconstruction)
does better than R(D/2) on Gaussian sources.

A 25 — Diffc-A

20 — DIffC.-F
o 5] --- DiffC-A" R(D/2)
c |4 - - - DiffC-F’
5 / —P-A

5 P-F

0 |

0 05 1 15 2 25

Rate, /[X, Z] [bpd]



DiffC [Theis et al., 2022]

e First study of the R-D performance of this approach.
e Further optimized the forward (noising) process for R-D performance.
e Results:
> DiffC (with optimized noising process + ODE-based reconstruction)
does better than R(D/2) on Gaussian sources.

>

25

—— DiffC-A
20 — DIffC-F
o 5| --- DiffC-A" R(D/2)
< . - - - DiffC-F
” — P-A

SI

|

/ | |
- 0 05 1 15 2 25
Rate, /[X, Z] [bpd]

This is the best possible R-D
performance under perfect realism
constraint without common randomness.




DiffC [Theis et al., 2022]

e Results:

> DiffC significantly outperforms BPG and GAN-based HiFiC
[Mentzer et al., 2020] ON ImageNet 64

60

50 |

40
o

= 30

20

10

0

0 05 1
Bits per pixel

15 2 25

PSNR [dB]

40

35|

30
25
20

15|

10

/

0 05 1

15 2 25
Bits per pixel

BPG
—— HiFiC
----HiFiC (pretrained)
—— DiffC-F
—— DiffC-A



DiffC [Theis et al., 2022]

e (Caveat: results are hypothetical;, naive channel simulation (e.q.,
PFR runtime ~ exp(bit-rate) [Theis and Ahmed, 2022]) would be too
expensive.



Information per step on Imagenet64x64

DiffC

27(100) would be too big...

80 1

60 1

Dxu(q(ze-1]ze, X)||p(ze - 1]2¢))

40

204

T T T T T T
1000 800 600 400 200 0

Increasing SNR



UQD M [Yang et al., 2025]

e \We can bypass the difficulty of simulating high-dim Gaussian channels by
simulating uniform-noise channels instead.
e The uniform channel can be simulated efficiently using Universal (Dithered)

Quantization [zamir and Feder, 1992], with optimal expected code length and
running time.



UQD M [Yang et al., 2025]

Proposed forward process:
We keep the same reverse-time factorization as in Gaussian diffusion, but
replace Gaussian distributions with matching uniform distributions:

T
q(zo.7|T) = q(27|) H q(zt-1l2t, T)
SN— =1

~N(0,1),

keep unchanged



U QD M [Yang et al., 2025]

Proposed forward process:
We keep the same reverse-time factorization as in Gaussian diffusion, but
replace Gaussian distributions with matching uniform distributions:

T
q(zo.r|x) = q(2r|T) Hq 2zt 1|24, T)
N— =1 & -

~ N(0,1),

keep unchanged

Change from Gaussian to uniform: A(t)

N (b(t)z + c(t)x, B2 (1)) U(b(t)ze + c(t)z = —])

where b(t), c(t), and f(t) are specified by the Gaussian noising process, and
we choose quantization width A(t) := v/125(t) to match the variance of Gaussian.



UQD M [Yang et al., 2025]

Proposed reverse process:
e In Gaussian diffusion, the reverse process model is chosen as

pH(Zt—1|Zt) s Q(Zt—1|zt733 — C%H(Zt))

e \Ve make the same choice, except we additionally broaden it by convolving
with uq-#, @]) for entropy modeling with UQ [Ballé et al., 2018].

e \We also make the reverse-process variance learnable.



UQD M [Yang et al., 2025]

End-to-end trained NELBO v.s. num diffusion steps T

—_——

->- UQDM (fixed rev. var.)
—s=— UQDM

—— VDM

VDM (T =1000)

-
——
-
-

-
-
-
-
-
-
-
-
-
-
-

Empirically, the NELBO for
UQDM appears to diverge
with increasing 7; 3
optimal 7<10.

Finetuning from Gaussian
diffusion didn’t help.
Learning reverse-process
variance helped a lot.



UQDM [Yang et al., 2025]

Rate-distortion and rate-realism results on ImageNet 64

60 —++ |JPEG
s == |PEG 2000
r - BPG
10? == CTC
50 =»: CDC (p=0.9)
e =
VDM T=1000, denoise
20 —+- JPEG —%- VDM T=20, ancestral |
= == |PEG 2000 —+— VDM T=20, denoise
z — BPG o 10 -%: VDM T=20, flow-based
2 = CTC e UQDM T=4, ancestral _
o 30 =»- CDC (p=0.9) +- UQDM T=4, denoise
== CDC (p=0) + UQDM T=4, flow-based
VDM T=1000, denoise  DiffC
~%- VDM =20, ancestral .|
20 —— VDM T=20, denoise DiffC,
% VDM T=20, flow-based 1=20 1p°
« UQDM T=4, ancestral
<+ UQDM T=4, denoise Ours
L <~ UQDM T=4, flow-based 0
0.0 2.5 5.0 7:5 10.0 12:5. 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Rate (hnn) Rate (hnn)

Fast encoding/decoding (as fast as evaluating NELBO), ~0.1 sec for ImageNet 64




LCPD [Vonderfecht and Liu, 2025]

Concurrent work implements DiffC by
introducing practical workarounds: B} S 11 S -
e Skipping CS steps when KL is small: Gl : 4
RCC(q(2999] Z1000, X ), P(2999] Z1000) (Z1000, X)) XK
RCC(q(2900] Z1000, X), P(2900] Z1000), (Z1000, X ) )[4

e “Chunking up” dimensions of Z when KL is

large [Flamich et al., 2020], and use a GPU
implementation of PFR.

—— SD1.5 . SD 1.5 hypothetical —— SD 1.5 w/ prompt —— SD21 —=— PerCo —4— MS-ILLM —+— DIffEIC === SD1.5 VAE
PSNR T LPIPS | CLIP Score T Q-Align 1
26 e A 100
3 4.
- . Pt ) 051 2 X« o5
Competitive results when applied on top of “ #7 oal N\ 0
A sl 04 ANA 90 :
P PP P AN =
k] & # - ik RN 851 AN/ 35
g2 52 A b
H - 5 ¥~ . . 801 ¥ 30
latent di ion m I
" > | 7P £ 25
161~ 0.1 erlel 20 ¢ ’
0.002 0.01 0.02 0.05 0.1 0.002 0.01 0.02 0.05 0.1 0.002 0.01 0.02 0.05 0.1 0.002 0.01 0.02 0.05 0.1
Bits per pixel Bits per pixel Bits per pixel Bits per pixel



Discussions — design choices

Type of conditioning (choice of }):
e Text/language is insufficient for preserving spatial information [Lei et al., 2023].
e Conditioning on a pixel-space reconstruction can work well in theory [Yan et al.,
2021], [Hoogeboom et al., 2023], rivaling end-to-end training [Yang & Mandt, 2023].

Pixel-space v.s. latent-space diffusion:

Pixel-space diffusion Latent diffusion

74Doesn’t require training a separate Y Requires training a separate autoencoder;

autoencoder; theoretically more optimal. suboptimal in theory.

("4Yields better control over R-D-P tradeoff. Y Performance limited by the pre-trained
autoencoder.

Y{ Computationally more expensive. (74Computationally cheaper

X Patch-based reconstruction may not be "4 Tends to offer better realism (globally coherent

suitable for very low bit-rates. reconstructions) at very low rates.



Discussions — open problems

High computational cost.

e SOTA methods still require on the order of ~10 iterative denoising steps.

Table 2: Encoding and Decoding Speed (in seconds). Kodak
Model Encoding Speed (in sec.) Decoding Speed (in sec.)
VM 16.892 + 7.574 0.135 4+ 0.002
MS-ILLM 0.084 £+ 0.021 0.080 £ 0.007
Text-Sketch (PIC) 163.070 £ 0.380 2,725 +0.012
Text-Sketch (PICS) 190.231 £+ 2.476 19.288 £+ 0.251
PerCo - 5 denoising steps 0.080 £ 0.018 0.665 £ 0.009
PerCo - 20 denoising steps 0.080 + 0.018 2.551 £0.018 [Careil et al., 2023]

e Few-step sampling is an active research topic; some solutions: higher-order
samplers [Liu 2022, Jolicoeur-Martineau 2021], model distillation [Salimans & Ho 2022,
consistency models [Song and Dhariwal, 2023], etc.



Discussions — open problems

Loss of fine details.

Non-linear transform coding

HFD [Hoogeboom et al., 2023] (PO-ELIC), [He et al., 2022]

Original



Discussions — open problems

Difficulty with evaluation in the very low bit-rate regime.

e As generation performance improves, distortion metrics such as PSNR and
MS-SSIM (even LPIPS) are no longer informative, nor is FID [Careil et al., 2023].
e Many plausible and realistic reconstructions exist — which is the “best?



Discussions — open problems

Difficulty with evaluation in the very low bit-rate regime.

e As generation performance improves, distortion metrics such as PSNR and
MS-SSIM (even LPIPS) are no longer informative, nor is FID [Careil et al., 2023].
e Many plausible and realistic reconstructions exist — which is the “best?

e Some possible solutions:
o Human assessment [Mentzer et al., 2020].
o Measure the preservation of semantic / spatial information, e.g., using CLIP / loU
scores [Careil et al., 2023].
o Alternative distortion/realism metrics, see e.g. Wasserstein distortion [Qiu et al.,
2024].



Discussions — open problems

Effectively communicating information with diffusion.

e Random coding / channel simulation can potentially outperform deterministic
coding (“compress + refine”) [Theis and Agustsson, 2021], [Theis et al., 2022].

e To achieve this, we can
o Develop more efficient channel simulation schemes [Vonderfecht and Liu, 2025].
o Consider non-Gaussian channel [Yang et al., 2025] — would be useful to have I-MMSE
relations analogous to the Gaussian case [Guo et al., 2005; Kong et al., 2023].



Thank you! Q & A
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