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Era of Massive High-Dimensional Data

Camera and LLIDAR data

https://www.mdpi.com/2073-8994/12/2/324

Image by NASA Space Flight Center via Flickr

Image/Video in autonomous systems Satellite and Remote Sensing Imagery

Medical imaging Graphical Scientific Datasets

 Data compression is critical for data storage, sharing, analysis


https://www.flickr.com/photos/gsfc/7630269434
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Learning-based compression
Generative compression
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Success of Neural Compression
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* Improved PSNR (distortion) for a given rate

"

Proposed method, 3986 byte;s (0.113 bit/px), PSNR: luma 27.01 dB/chroma 34.16 dB, MS-SSIM: 0.9039

|Balle et al 2017]
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JPEG, 4283 bytes (0.121 bit/px), PSNR: luma 24.85 dB/chroma 29.23 dB, MS-SSIM: 0.8079

JPEG

* Improved perceptual quality

e |t has further motivated the new theory of rate, distortion, perception



Rate-Distortion-Perception Function

Enc

Bits per
iImage or

R pixel
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* TJriple tradeoff between rate, distortion, perception

[Blau&Michaeli ’19], [Matsumoto '18], [Saldi et al ’15]

RDP function:

R(D, P) =

min
QX|X

v[d(X,X)]<D

I[(X;X)

=== Shannon’s R-D curve (unconstrained)
Medium perceptual quality constraint
- Perfect perceptual quality constraint

Distortion

Gaussian



Rate-Distortion-Perception Function

Bits per
iImage or
R pixel
Enc > Dec
0101101...

* TJriple tradeoff between rate, distortion, perception
[Blau&Michaeli ’19], [Matsumoto '18], [Saldi et al ’15]

 RDP function: R(D,P)=  min I(X;X)
QX|X

i[d(X,X)]<D

5(Px,Pg)<P

* RDP characterizes the fundamental limits of lossy

compression under distortion and perception constrains
[Theis&Wagner '21]

=== Shannon’s R-D curve (unconstrained)
Medium perceptual quality constraint
- Perfect perceptual quality constraint
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Rate-Distortion-Perception Function

Shared randomness

Enc

Bits per
iImage or

R pixel

)

0101101.

\

Dec

* TJriple tradeoff between rate, distortion, perception

[Blau&Michaeli ’19], [Matsumoto '18], [Saldi et al ’15]

 RDP function: R(D, P) =

min
QX|X

v[d(X,X)]<D

I[(X;X)

* RDP characterizes the fundamental limits of lossy

compression under distortion and perception constrains

[Theis&Wagner 21]

* Infinite shared randomness may be necessary
[Saldi et al '15], [Chen et al '22], [Wagner ‘22]

=== Shannon’s R-D curve (unconstrained)
Medium perceptual quality constraint
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How Is Learning Useful?

 Optimal schemes from information theory have exponential complexity in dimension

 Data is nominally high dimensional, but intrinsically is of much lower dimension




How Is Learning Useful?

 Optimal schemes from information theory have exponential complexity in dimension

 Data is nominally high dimensional, but intrinsically is of much lower dimension
A

* the geometry:




How Is Learning Useful?

 Optimal schemes from information theory have exponential complexity in dimension

 Data is nominally high dimensional, but intrinsically is of much lower dimension
A

high-dim  low-dim
k
. the geometry: 9o : R = R




How Is Learning Useful?

 Optimal schemes from information theory have exponential complexity in dimension

 Data is nominally high dimensional, but intrinsically is of much lower dimension
high-dim  low-dim
k
. the geometry: 9o : R = R

gs : RF — R"
low-dim  high-dim




How Is Learning Useful?

 Optimal schemes from information theory have exponential complexity in dimension

 Data is nominally high dimensional, but intrinsically is of much lower dimension
high-dim  low-dim

. the geometry: Ja : R" — R"
gs : RF — R"
low-dim  high-dim

e Ja)gs complex and unknown




How Is Learning Useful?

 Optimal schemes from information theory have exponential complexity in dimension

 Data is nominally high dimensional, but intrinsically is of much lower dimension
high-dim  low-dim

. the geometry: Ja : R" — R"
gs : RF — R"
low-dim  high-dim

e Ja)gs complex and unknown

e |earn it from datal




Nonlinear Transform Coding (NTC)

Transform xz to Y

Y is rounded to ¥ entry-wise

Neural Compression

Y is encoded under model P3 (also learned)

Reconstruction £ is transformed from ¥

Objective:

min
Ga:9s:P7

Uz | —logpy(y)| + A -

[Theis et al '17] [Agustsson et al ‘17]
[Ballé et al ’17] [Minnen et al ’18]

iz (d(z, )] (rate/distortion tradeoft)




Neural Compression

Nonlinear Transform Coding (NTC)
Transformxto ¥

Y is rounded to ¥ entry-wise

Y is encoded under model P3 (also learned)
[Theis et al '17] [Agustsson et al ‘17]

Reconstruction & is transformed from ¥ [Balle et al *17] [Minnen et al ’18]

Objective: gafgifi)@ Lz [—logpg(y)] + A - Egld(x,&)|  (rate/distortion tradeoff)
min E|—logpy(y)] + M Eld(z, )| + A0 ( Py, Ps)
(rate/distortion/perception tradeoff)

[Mentzer ’22] [Muckley et al '23]
[Agustsson et al ‘23]




Recent Architectures

Recent architectures involve sophisticated transform + entropy model design [1, 2, 3]
Training: noisy proxy |g.(x)] — go(x) +w, u ~ Unif([—0.5,0.5)%)
Entropy model  py:(9|2) = [N (p, 0°) * U(-0.5,0.5)] ()
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Complex channel-spatial dependencies within Y
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[1] He, Dailan, et al. "Elic: Efficient learned image compression with unevenly grouped space-channel contextual adaptive coding.” CVPR 2022.
[2] He, Dailan, et al. “Po-elic: Perception-oriented efficient learned image coding” CVPR 2022.
[3] M. Muckley et al. “Improving statistical fidelity for neural image compression with implicit local likelihood models.” ICML 20283.



Fundamental Questions

* Are learning-based compressors such as NTC information-theoretically optimal®?

- Some look at stylized sources with intrinsic dimension one
[Wagner&Ballé '21], [Bhadane et al '22], [Ozyilkan et al ‘24]

- Some compute bounds on the RD function of real-world
sources and show that there is a gap

[Lei, Hassani, SB '22], [Yang&Mandt '22]

* Can we design practical compressors informed by information theoretic designs?
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e Sub-optimality of NTC for Gaussian sources
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e Sub-optimality of NTC for Gaussian sources
e [attice Transform Coding (LTC) for RD
o LTC with Dithering for RDP



Outline

Sub-optimality of NTC for Gaussian sources
Lattice Transform Coding (LTC) for RD
LTC with Dithering for RDP

Simulation Results



NTC for i.1.d. Gaussian Source

* Source: © = (x1,...,x,), x; ~N(0,1)
®* Considern = 1,2....

* NTC does not outperform scalar quantization with increasing n

Scalar quantization
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Lattice Packings

* In NTC, the latent vector is rounded element-wise
Equivalent to the integer lattice

Not the most efficient in packing the space

ﬂ

Integer Lattice

[1] Lei, Eric, Hamed Hassani, and Shirin Saeedi Bidokhti. "Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding." ICLR. 2025
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Lattice Packings

®* In NTC, the latent vector is rounded element-wise
Equivalent to the integer lattice

Not the most efficient in packing the space

Integer Lattice Hexagonal Lattice

* g, g fail to map square regions to
hexagons

NTC Optimal VQ
Quantization Regions (2-d)

[1] Lei, Eric, Hamed Hassani, and Shirin Saeedi Bidokhti. "Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding." ICLR. 2025

Increasing depth/width does not help



Lattice Quantization in the Latent Space

[1] Lei, Eric, Hamed Hassani, and Shirin Saeedi Bidokhti. "Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding." ICLR. 2025



Lattice Quantization in the Latent Space

* ldea: Replace the integer rounding, with lattice quantization

[1] Lei, Eric, Hamed Hassani, and Shirin Saeedi Bidokhti. "Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding." ICLR. 2025



Lattice Quantization in the Latent Space

* ldea: Replace the integer rounding, with lattice quantization

* Connection to companding results [Gersho 1979; Bucklew N y =

1981; Bucklew 1983; Linder-Zamir-Zeger 1999] n ~

L Yy Y XL

- e TR AU PRSP
N

* Asymptotically RD- optimal for Gaussian sources

[1] Lei, Eric, Hamed Hassani, and Shirin Saeedi Bidokhti. "Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding." ICLR. 2025



Lattice Transform Coding

Lattice Transform Coding (LTC)
Transform x to ¥

Y is lattice-quantized to Y

Y is encoded under model P37 (also learned) \

Reconstruction £ is transformed from ¥ —10q

Objective: min Eg [—logpy(y)| + A - Ez|d(x, Z),

Ga:9s,P7 /

Using lattices requires new methods to optimizing the objective...




Computing the Rate Term

Objective: min E, |—logpy(y)] + A - Eg|d(x, T)]
da - :9s,Pg

PMF on centers y defined by integrating PDF p,, (y) over latent space: /\

pg(’g) :/V(yA)py(y)dy o« Vo V(j\})

In NTC, lattice cell V(%) is a square— easy to integrate

For a lattice, V(%) is no longer square— difficult to integrate!

n |

— [K

Instead, we integrate using Monte-Carlo: Pg(9) = Ewunit(v(0)) [Py (9 + u)]




The Choice of the Lattice A

* Larger lattice dimension n —> improved packing

efficiency
* Complexity— finding closest lattice vector 0.084f-
P . . " 0.082}-
Densest lattices for n < 24 with low complexity ., |\ . i
LZ_J el A% —
* n = 2 Hexagonal lattice 2 oorer A\
| o 0.076F % \, =\ AR R
* n = 4: D¥ lattice 3 oora o %
_ ; 0.072f EGE? . oEg
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DIMENSION

F1G. 2. Normalized second moment G for various lattices, and the Zador and sphere bounds. It is known
that the best quantizers must lie between the two bounds.

[Conway and Sloane, 1984]



LTC for I1.1.d. Gaussian Source

Source: © = (x1,...,xy),
Considern = 2, 4, 8, 24
LTC performs close to VQ

* Does not require exponential codebook search

Approaches R(D) lower bound
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Image Compression

Apply lattices along “channel” dimension of

latent tensor s
Apply lattices product-wise 36°
Outperforms VTM and recent VQ-based codecs "
-
Approaches Kodak R(D) bound from [Yang and = R
al U (D)
Mandt, 2022] o 32- S me Cheng2020-NTC
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So Far...

e [attice transform coding (LTC), uses latent lattice quantization, and can recover VQ
without exponential complexity

e Joward RDP ...

v/ Lattice quantization

g Randomness



LTC with Shared Randomness: Dithering

e Random dither u from the lattice cell, shared between encoder/decoder

e Dithered LQ applied in the latent space:
Qr(y —u) +u
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LTC with Shared Randomness: Dithering

e Random dither u from the lattice cell, shared between encoder/decoder

e Dithered LQ applied in the latent space:

N~
Qa(y —u) +u £>ga

T

8

» Lattices become sphere-like in high dimensions P

. Latent dithered LQ (Qa(y — ©) + u ) acts like AWGN
channel [Zamir&Feder "96]
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LTC with Shared Randomness: Dithering

e Random dither u from the lattice cell, shared between encoder/decoder

T

* Dithered LQ applied in the latent space: I
L
Qr(y —u) + u —1Ya
» Lattices become sphere-like in high dimensions P

. Latent dithered LQ (Qa(y — ©) + u ) acts like AWGN
channel [Zamir&Feder "96]

Theorem [Lel,Hassani,SB ’25]: Consider an iid
Gaussian source, squared error distortion, and a
Wasserstein of order 2 for perception measure. SD-

LTCs can asymptotically achieve R(D,P).

8
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Shared-Dither LTC (SD-LTC)



LTC with No Shared Randomness

 SD-LTC requires infinite shared randomness
 Not always available

e What if there is no shared randomness



LTC with No Shared Randomness

SD-LTC requires infinite shared randomness
 Not always available

What if there is no shared randomness

Random ditheru ~ Unif () ) at decoder only N su ]

. QL 4 b
Dither applied to quantized latent with scaling:  —| g, 9. Qx .C) {ggl—

Qa(y) + su | Pg N

Private-Dither LTC (PD-LTC)




PD-LTC Achievability at P = 0

 Theorem: PD-LTCs can asymptotically
achieve R(g, ~o) for iid Gaussians (squared

error Wasserstein of order 2 perception).

I

—1Ya

1 QA

SU




PD-LTC Achievability at P = 0

e Theorem: PD-LTCs can asymptotically S su

. D ) .
achieve R(=, oo) for iid Gaussians (squared L Y
(5 +90) (s9 “1Gal Qp D~

/ P

error Wasserstein of order 2 perception).

Proof Idea.

- AWGN-equivalence fails

» Proof relies on lattice Gaussian techniques [1] Qi (y) ~ Lattice Gaussian

-
¢ §= —> enforces perception constraint

\/02 — D/2

[1] C. Ling and J.-C. Belfiore. Achieving awgn channel capacity with lattice gaussian coding. IEEE Trans. Inf. Theory, 2014.




Comparing Fundamental Limits

e Consider P =0

2.0
e R(D/2,00) optimal without
shared randomness |1, 2] 1.5
&~
1.0
0.5

Infinite shared g
SD-LTC 0.5 1.0 1.5 2.0

[1] N. Saldi, T. Linder, and S. YUksel. Output constrained lossy source coding with limited common randomness. IEEE Trans. Inf. Theory 2015.
[2] A. B Wagner. The rate-distortion-perception tradeoff: The role of common randomness. arXiv 2022.



Experimental Results: Gaussian

R(D,0)
- R(D/2, 00)
-~ PD-NTC Zg, R. =0
- SD-NTC Zg, R, = ¢

— PD-LTC Ejg, R,

— SD-LTC Eg, R, = 00

- RCCn=1, R.=0o0
RCCn=8, R, =0

0.1 0.2 0.3 04 0.5 1.0 2.0
Distortion



Experimental Results: Real-World Sources
Speech and Physics sources [Yang & Mandt, 2022]

0.6 1.0 T
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Conclusion & Future Work

We proposed neural compressors that provide VQ-type solutions, allow
shared randomness into the design, have low complexity, and
performance guarantees for Gaussian sources.

Generalizing the analysis of PD-LTC to P>0
Generalizing the solution to limited randomness

LTC for distributed compression, in line with [Ozyilkan et al 23]



