Toward Rate-Distortion-Perception Optimality with Lattice Transform Coding

Shirin Saeedi Bidokhti
University of Pennsylvania
Joint work with Hamed Hassani and Eric Lei

Era of Massive High-Dimensional Data

Image/Video in autonomous systems

Medical imaging

Satellite and Remote Sensing Imagery

Graphical Scientific Datasets

Data compression is critical for data storage, sharing, analysis

Data Compression Timeline

Success of Neural Compression

Proposed method, 3986 bytes (0.113 bit/px), PSNR: luma 27.01 dB/chroma 34.16 dB, MS-SSIM: 0.903

[Balle et al 2017]

JPEG, 4283 bytes (0.121 bit/px), PSNR: luma 24.85 dB/chroma 29.23 dB, MS-SSIM: 0.8079

- Improved PSNR (distortion) for a given rate
- Improved perceptual quality
- It has further motivated the new theory of rate, distortion, perception

Rate-Distortion-Perception Function

- Triple tradeoff between rate, distortion, perception [Blau&Michaeli '19], [Matsumoto '18], [Saldi et al '15]
- RDP function:

$$R(D, P) = \min_{\substack{Q_{\hat{X}|X} \\ \mathcal{E}[d(X, \hat{X})] \leq D \\ \delta(P_X, P_{\hat{X}}) \leq P}} I(X; \hat{X})$$

Rate-Distortion-Perception Function

- Triple tradeoff between rate, distortion, perception [Blau&Michaeli '19], [Matsumoto '18], [Saldi et al '15]
- RDP function:

$$R(D, P) = \min_{\substack{Q_{\hat{X}|X} \\ \delta(P_X, P_{\hat{X}}) \le P}} I(X; \hat{X})$$

 RDP characterizes the fundamental limits of lossy compression under distortion and perception constrains [Theis&Wagner '21]

Rate-Distortion-Perception Function

Shared randomness

- Triple tradeoff between rate, distortion, perception [Blau&Michaeli '19], [Matsumoto '18], [Saldi et al '15]
- RDP function:

$$R(D, P) = \min_{\substack{Q_{\hat{X}|X} \\ \mathcal{E}[d(X, \hat{X})] \leq D \\ \delta(P_X, P_{\hat{X}}) \leq P}} I(X; \hat{X})$$

- RDP characterizes the fundamental limits of lossy compression under distortion and perception constrains [Theis&Wagner '21]
- Infinite shared randomness may be necessary [Saldi et al '15], [Chen et al '22], [Wagner '22]

- Optimal schemes from information theory have exponential complexity in dimension
- Data is nominally high dimensional, but intrinsically is of much lower dimension

- Optimal schemes from information theory have exponential complexity in dimension
- Data is nominally high dimensional, but intrinsically is of much lower dimension

the geometry:

- Optimal schemes from information theory have exponential complexity in dimension
- Data is nominally high dimensional, but intrinsically is of much lower dimension

• the geometry: $g_a: \mathbb{R}^n o \mathbb{R}^k$

- Optimal schemes from information theory have exponential complexity in dimension
- Data is nominally high dimensional, but intrinsically is of much lower dimension

- Optimal schemes from information theory have exponential complexity in dimension
- Data is nominally high dimensional, but intrinsically is of much lower dimension

high-dim low-dim
$$g_a: \mathbb{R}^n o \mathbb{R}^k$$

$$g_s: \mathbb{R}^k \to \mathbb{R}^n$$

low-dim high-dim

• g_a, g_s complex and unknown

- Optimal schemes from information theory have exponential complexity in dimension
- Data is nominally high dimensional, but intrinsically is of much lower dimension

• the geometry: $g_a:\mathbb{R}^n o \mathbb{R}^k$

$$g_s: \mathbb{R}^k \to \mathbb{R}^n$$

low-dim high-dim

- g_a, g_s complex and unknown
- learn it from data!

Neural Compression

- Nonlinear Transform Coding (NTC)
- ullet Transform x to y
- ullet y is rounded to \hat{y} entry-wise
- \hat{y} is encoded under model $p\hat{y}$ (also learned)
- ullet Reconstruction $\hat{oldsymbol{x}}$ is transformed from $\hat{oldsymbol{y}}$
- Objective: $\min_{g_a,g_s,p_{\hat{m{y}}}} \mathbb{E}_{m{x}} \left[-\log p_{\hat{m{y}}}(\hat{m{y}}) \right] + \lambda \cdot \mathbb{E}_{m{x}} [\mathsf{d}(m{x},\hat{m{x}})]$

[Theis et al '17] [Agustsson et al '17] [Ballé et al '17] [Minnen et al '18]

(rate/distortion tradeoff)

Neural Compression

- Nonlinear Transform Coding (NTC)
- ullet Transform x to y
- ullet y is rounded to \hat{y} entry-wise
- $\hat{m{y}}$ is encoded under model $p\hat{m{y}}$ (also learned)
- ullet Reconstruction $\hat{oldsymbol{x}}$ is transformed from $\hat{oldsymbol{y}}$
- Objective: $\min_{g_a,g_s,p_{\hat{m{y}}}} \mathbb{E}_{m{x}} \left[-\log p_{\hat{m{y}}}(\hat{m{y}}) \right] + \lambda \cdot \mathbb{E}_{m{x}} [\mathsf{d}(m{x},\hat{m{x}})]$

[Theis et al '17] [Agustsson et al '17] [Ballé et al '17] [Minnen et al '18]

(rate/distortion tradeoff)

$$\min \mathbb{E}\left[-\log p_{\hat{\boldsymbol{y}}}(\hat{\boldsymbol{y}})\right] + \lambda_1 \mathbb{E}\left[d(\boldsymbol{x}, \hat{\boldsymbol{x}})\right] + \lambda_2 \delta(P_{\boldsymbol{x}}, P_{\hat{\boldsymbol{x}}})$$

(rate/distortion/perception tradeoff)

[Mentzer '22] [Muckley et al '23] [Agustsson et al '23]

Recent Architectures

- Recent architectures involve sophisticated transform + entropy model design [1, 2, 3]
- Training: noisy proxy $|g_a(x)| \rightarrow g_a(x) + u$, $u \sim \text{Unif}([-0.5, 0.5)^d)$
- Entropy model $p_{\hat{\boldsymbol{y}}|\hat{\boldsymbol{z}}}(\hat{\boldsymbol{y}}|\hat{\boldsymbol{z}}) = \left[\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2) * U(-0.5, 0.5)\right](\hat{\boldsymbol{y}})$
- Complex channel-spatial dependencies within ŷ

ELIC [1]

^[1] He, Dailan, et al. "Elic: Efficient learned image compression with unevenly grouped space-channel contextual adaptive coding." CVPR 2022. [2] He, Dailan, et al. "Po-elic: Perception-oriented efficient learned image coding" CVPR 2022. [3] M. Muckley et al. "Improving statistical fidelity for neural image compression with implicit local likelihood models." ICML 2023.

Fundamental Questions

- Are learning-based compressors such as NTC information-theoretically optimal?
 - Some look at stylized sources with intrinsic dimension one [Wagner&Ballé '21], [Bhadane et al '22], [Ozyilkan et al '24]

 Some compute bounds on the RD function of real-world sources and show that there is a gap
 [Lei, Hassani, SB '22], [Yang&Mandt '22]

• Can we design practical compressors informed by information theoretic designs?

Sub-optimality of NTC for Gaussian sources

- Sub-optimality of NTC for Gaussian sources
- Lattice Transform Coding (LTC) for RD

- Sub-optimality of NTC for Gaussian sources
- Lattice Transform Coding (LTC) for RD
- LTC with Dithering for RDP

- Sub-optimality of NTC for Gaussian sources
- Lattice Transform Coding (LTC) for RD
- LTC with Dithering for RDP
- Simulation Results

NTC for i.i.d. Gaussian Source

- Source: $\boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n), \quad \boldsymbol{x}_i \sim \mathcal{N}(0, 1)$
- Consider n = 1, 2, ...
- NTC does not outperform scalar quantization with increasing n

Scalar quantization

Lattice Packings

In NTC, the latent vector is rounded element-wise
 Equivalent to the integer lattice
 Not the most efficient in packing the space

Lattice Packings

 In NTC, the latent vector is rounded element-wise Equivalent to the integer lattice
 Not the most efficient in packing the space

Integer Lattice

Hexagonal Lattice

Lattice Packings

 In NTC, the latent vector is rounded element-wise Equivalent to the integer lattice
 Not the most efficient in packing the space

 g_a, g_s fail to map square regions to hexagons
 Increasing depth/width does not help

Quantization Regions (2-d)

Lattice Quantization in the Latent Space

Lattice Quantization in the Latent Space

• Idea: Replace the integer rounding, with lattice quantization

Lattice Quantization in the Latent Space

• Idea: Replace the integer rounding, with lattice quantization

 Connection to companding results [Gersho 1979; Bucklew 1981; Bucklew 1983; Linder-Zamir-Zeger 1999]

Asymptotically RD- optimal for Gaussian sources

Lattice Transform Coding

- Lattice Transform Coding (LTC)
- ullet Transform x to y
- ullet y is lattice-quantized to \hat{y}
- $\hat{m{y}}$ is encoded under model $p\hat{m{y}}$ (also learned)
- ullet Reconstruction $\hat{oldsymbol{x}}$ is transformed from $\hat{oldsymbol{y}}$
- ullet Objective: $\min_{g_a,g_s,p_{\hat{m{y}}}} \mathbb{E}_{m{x}} \left[-\log p_{\hat{m{y}}}(\hat{m{y}})
 ight] + \lambda \cdot \mathbb{E}_{m{x}} [\mathsf{d}(m{x},\hat{m{x}})]$

Using lattices requires new methods to optimizing the objective...

Computing the Rate Term

- Objective: $\min_{g_a,g_s,p_{\hat{m{y}}}} \mathbb{E}_{m{x}} \left[-\log p_{\hat{m{y}}}(\hat{m{y}}) \right] + \lambda \cdot \mathbb{E}_{m{x}} [d(m{x},\hat{m{x}})]$
- PMF on centers \hat{y} defined by integrating PDF $p_y(y)$ over latent space:

$$p_{\hat{\boldsymbol{y}}}(\hat{\boldsymbol{y}}) = \int_{V(\hat{\boldsymbol{y}})} p_{\boldsymbol{y}}(\boldsymbol{y}) d\boldsymbol{y}$$

- In NTC, lattice cell $V(\hat{y})$ is a square— easy to integrate
- For a lattice, $V(\hat{y})$ is no longer square— difficult to integrate!
- Instead, we integrate using Monte-Carlo: $p_{\hat{y}}(\hat{y}) = \mathbb{E}_{u' \sim \text{Unif}(V(\mathbf{0}))}[p_{y}(\hat{y} + u')]$

The Choice of the Lattice Λ

- Larger lattice dimension $n \rightarrow \text{improved packing}$ efficiency
- Complexity— finding closest lattice vector
- Densest lattices for $n \le 24$ with low complexity
 - n = 2 Hexagonal lattice
 - n = 4: D_n^* lattice
 - n=8: E_8 (Gosset) lattice
 - n=16: Λ_{16} (Barnes-Wall) lattice
 - n=24: Λ_{24} (Leech) lattice

FIG. 2. Normalized second moment G for various lattices, and the Zador and sphere bounds. It is known that the best quantizers must lie between the two bounds.

LTC for i.i.d. Gaussian Source

- Source: $\boldsymbol{x}=(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n), \quad \boldsymbol{x}_i \sim \mathcal{N}(0,1)$
- Consider n = 2, 4, 8, 24
- LTC performs close to VQ
 - Does not require exponential codebook search
- ullet Approaches R(D) lower bound

Image Compression

- Apply lattices along "channel" dimension of latent tensor
- Apply lattices product-wise
- Outperforms VTM and recent VQ-based codecs

• Approaches Kodak R(D) bound from [Yang and Mandt, 2022]

Kodak evaluation dataset

So Far...

• Lattice transform coding (LTC), uses latent lattice quantization, and can recover VQ without exponential complexity

- Toward RDP ...
 - Lattice quantization
 - Randomness

LTC with Shared Randomness: Dithering

- Random dither u from the lattice cell, shared between encoder/decoder
- Dithered LQ applied in the latent space:

$$Q_{\Lambda}(\boldsymbol{y}-\boldsymbol{u})+\boldsymbol{u}$$

Shared-Dither LTC (SD-LTC)

LTC with Shared Randomness: Dithering

- Random dither u from the lattice cell, shared between encoder/decoder
- Dithered LQ applied in the latent space:

$$Q_{\Lambda}(\boldsymbol{y}-\boldsymbol{u})+\boldsymbol{u}$$

- Lattices become sphere-like in high dimensions
- Latent dithered LQ ($Q_{\Lambda}(y-u)+u$) acts like AWGN channel [Zamir&Feder '96]

Shared-Dither LTC (SD-LTC)

LTC with Shared Randomness: Dithering

- Random dither u from the lattice cell, shared between encoder/decoder
- Dithered LQ applied in the latent space:

$$Q_{\Lambda}(\boldsymbol{y}-\boldsymbol{u})+\boldsymbol{u}$$

- Lattices become sphere-like in high dimensions
- Latent dithered LQ ($Q_{\Lambda}(y-u)+u$) acts like AWGN channel [Zamir&Feder '96]

Theorem [Lei, Hassani, SB '25]: Consider an iid Gaussian source, squared error distortion, and a Wasserstein of order 2 for perception measure. SD-LTCs can asymptotically achieve R(D,P).

Shared-Dither LTC (SD-LTC)

LTC with No Shared Randomness

- SD-LTC requires infinite shared randomness
 - Not always available
- What if there is no shared randomness

LTC with No Shared Randomness

- SD-LTC requires infinite shared randomness
 - Not always available
- What if there is no shared randomness

- Random dither $m{u} \sim \mathrm{Unif}(\mathcal{V}_0)$ at decoder only
- Dither applied to quantized latent with scaling:

$$Q_{\Lambda}(\boldsymbol{y}) + s\boldsymbol{u}$$

Private-Dither LTC (PD-LTC)

PD-LTC Achievability at P=0

• Theorem: PD-LTCs can asymptotically achieve $R(\frac{D}{2},\infty)$ for iid Gaussians (squared error Wasserstein of order 2 perception).

PD-LTC Achievability at P=0

• Theorem: PD-LTCs can asymptotically achieve $R(\frac{D}{2},\infty)$ for iid Gaussians (squared error Wasserstein of order 2 perception).

Proof Idea.

- AWGN-equivalence fails
- Proof relies on lattice Gaussian techniques [1] $Q_{\Lambda}(y) pprox ext{Lattice Gaussian}$
- $s = \frac{\sigma}{\sqrt{\sigma^2 D/2}} \implies$ enforces perception constraint

Comparing Fundamental Limits

- Consider P = 0
- $R(D/2,\infty)$ optimal without shared randomness [1, 2]

[1] N. Saldi, T. Linder, and S. Yüksel. Output constrained lossy source coding with limited common randomness. IEEE Trans. Inf. Theory 2015. [2] A. B Wagner. The rate-distortion-perception tradeoff: The role of common randomness. arXiv 2022.

Experimental Results: Gaussian

Experimental Results: Real-World Sources

Speech and Physics sources [Yang & Mandt, 2022]

Conclusion & Future Work

 We proposed neural compressors that provide VQ-type solutions, allow shared randomness into the design, have low complexity, and performance guarantees for Gaussian sources.

- Generalizing the analysis of PD-LTC to P>0
- Generalizing the solution to limited randomness
- LTC for distributed compression, in line with [Ozyilkan et al '23]