Online Conformal Compression for Zero-Delay Communication with Distortion Guarantees

Unnikrishnan Kunnath Ganesan*, Giuseppe Durisi*, Matteo Zecchin[†], Petar Popovski[‡] and Osvaldo Simeone[†]

*Chalmers University of Technology, [†]Kings College London, [‡]Aalborg University

Thursday 26th June, 2025

Motivation

- Thanks to advancements in **deep sequence modeling**, a range of powerful predictive models are widely available.
- Deep sequence models can be combined with compression algorithms to realize powerful prediction-powered sequence compressors ^{1,2}.

¹Schmidhuber and Heil, "Sequential neural text compression",IEEE Transactions on Neural Networks, 1996 ²Mahoney, "Fast Text Compression with Neural Networks.", Thirteenth International Florida Artificial Intelligence Research Society Conference, 2000

Motivation

- Most compressors based on deep sequence models are **lossless**^{3,4}, using e.g., arithmetic codes.
- Distortion introduces errors in the predictor's input and can degrade the compression rate.

 $^3\mbox{Goyal}$ et al., "Deepzip: Lossless data compression using recurrent neural networks", Data Compression Conference (DCC) 2019

⁴Valmeekam et al., "LLMzip: Lossless text compression using large language models", arXiv preprint, 2023

Our contribution

- We introduce **online conformal compression** (OCC), a zero-delay, prediction-powered lossy compression scheme.
- OCC applies online conformal prediction⁵, providing deterministic distortion guarantees for any input sequence, regardless of predictor quality.

⁵Gibbs and Candes, "Adaptive conformal inference under distribution shift", NeurIPS, 2021

Problem Formulation

• Zero-delay encoder:
$$X_1, \ldots, X_{t-1}, X_t \xrightarrow{\mu(X_t | \hat{X}_{t-1:1})} M_t$$
 (b_t -bits)

• Zero-delay decoder:
$$\hat{X}_1, \dots, \hat{X}_{t-1}, M_t \xrightarrow{\mu(X_t|X_{t-1:1})} \hat{X}_t$$

Problem Formulation

• Goal: Design a sequence of encoding/decoding functions that minimizes the transmission rate

$$B_T = \frac{1}{T} \sum_{t=1}^T b_t,$$

while guaranteeing for any $\alpha \in [0,1]$ the deterministic distortion requirement

for some constant C > 0.

Prediction Set-Based Encoding

• Obtain the high-probability prediction set

$$\hat{\mathcal{X}}_t = \{ X \in \mathcal{X} : \mu_t(X | \hat{X}_{t-1:1}) \ge \gamma_t \}.$$

• Use lossless compression for the truncated distribution

$$\bar{\mu}_t(x) = \frac{\mu_t(x|\hat{X}_{t-1:1})}{\sum_{x' \in \hat{\mathcal{X}}_t} \mu_t(x'|\hat{X}_{t-1:1})}, \quad \forall x \in \hat{\mathcal{X}}_t.$$

• An outage symbol is sent if $X_t \notin \hat{\mathcal{X}}_t$.

Online Conformal Prediction

• Online conformal prediction⁶ updates the threshold based on past errors as

⁶Gibbs and Candes, "Adaptive conformal inference under distribution shift", NeurIPS, 2021

Online Conformal Prediction

Lemma

For any sequence X_1, \ldots, X_T , the prediction sets $\hat{\mathcal{X}}_1, \ldots, \hat{\mathcal{X}}_T$ satisfy the coverage guarantee

$$\frac{1}{T}\sum_{t=1}^T \mathbb{1}\{X_t \notin \hat{\mathcal{X}}_t\} \le \alpha + \frac{1+\eta}{\eta T}.$$

Online Conformal Compression

- In **online conformal compression** (OCC), the encoder and decoder apply a prediction set-based encoding with threshold updated based on a variant of online conformal prediction.
- The encoded and the decoder use identical learned model for prediction which is pre-shared.

Online Conformal Compression

1) If $X_t \in \mathcal{X}_t$, we have $\hat{X}_t = X_t$ by construction and the threshold γ_t is increased as $\gamma_{t+1} = \gamma_t + \eta \alpha$

Online Conformal Compression

2) If $X_t \notin \mathcal{X}_t$, we may have $\hat{X}_t \neq X_t$, and the threshold γ_t is decreased as $\gamma_{t+1} = \gamma_t - \eta(1 - \alpha)$

Distortion Guarantees

Theorem

For any distortion level $\alpha \in [0, 1]$, any sequence of predictors $\mu_t(\cdot)$ and any data sequence X_1, \ldots, X_T , the distortion of online conformal compression is deterministically bounded as

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{\hat{X}_t \neq X_t\} \le \alpha + \frac{1+\eta}{\eta T}.$$

Proof.

Online conformal prediction's bound on the outage events \Downarrow Online conformal compression's bound on the distortion

Compression Performance

- Prediction model: nanoGPT model
- Data set: Shakespeare's works and Taylor Swift's songs.
- Baselines:
 - Dropout-LLMZip⁷, applies lossless compression (i.e., no thresholding) and drops symbols with probability α .
 - Block Conformal Compression (BCC), applies prediction set encoding with the **optimal fixed threshold** chosen in hindsight based on the entire sequence.

 $^{^7}$ Valmeekam et al., "LLMzip: Lossless text compression using large language models", arXiv preprint, 2023 $^{-1}$

Stationary Data

 OCC matches the performance of BCC and outperforms Dropout-LLMZip for most distortion levels.

Non-stationary Data

- Up to time $T=3500~{\rm data}$ comes from Shakespeare's works and after from Taylor's swift songs.
- OCC adapts to the different data distribution and delivers an homogeneous distortion level over time.

Conclusion

- We introduce online conformal compression (OCC), a zero-delay prediction-powered sequence compressor with deterministic distortion guarantees.
- OCC combines online conformal prediction with a prediction set-based compression to achieve performance comparable to that an offline encoder optimized in hindsight.