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Pre-presentation: Beyond DeCompress

• Extended algorithm and theoretical insights:
◦ Zero-shot Denoising via Neural Compression: arXiv:2506.12693

• Happy to chat - stop by our poster ⇓
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Denoising Problem Setup

Signal of interest: x = (x1, . . . , xn) ∈ Rn
+ Observation: y = (y1, . . . , yn)

The observations are conditionally independent given x, and follow the same

noise distribution:

y ∼
n∏

i=1
p(yi | xi).

A denoising method aims to estimate x given the noisy observation y.

Compression-based denoising

Background. Structured signals are more compressible than noisy ones.

Donoho [1]: minimum Kolmogorov complexity estimator

Weissman et al. [2]: asymptotic optimality of lossy compression with

post-processing

Theoretical foundations. Let Q ⊂ Rn denote the signal class of interest, such

as vectorized natural images of a fixed size. A lossy compression code for

Q is defined by an encoder-decoder pair (f, g), f : Q → {1, . . . , 2R}, and
g : {1, . . . , 2R} → Rn characterized by: i) Rate R, and ii) Distortion δ:

δ = sup
x∈Q

1
n

‖x − g(f (x))‖2
2.

The set of reconstructions forms the codebook:

C = {g(i) : i = 1, . . . , 2R} ⊂ Rn .

We propose compression-based denoising as a structured maximum likeli-

hood (ML) estimation. Given y and a lossy compression code (f, g) for Q,

the compression-based ML denoiser solves

x̂ = arg min
c∈C

L(c; y),

where L(c; y) := −
∑n

i=1 log p(yi | ci).

Clean signals are more compressible than their noisy counterparts, by virtue

of their structure.

The most likely codeword from a clean-signal codebook naturally performs

denoising.

1. AWGN. y = x + z, where z ∼ N (0, σ2
zIn),

x̂ = arg minc∈C ‖y − c‖2
2. (1)

Denoising by projecting the noisy observation onto the nearest codeword.

2. Poisson noise. yi ∼ Poisson(αxi) (low-light and photon-limited imaging

scenarios)

x̂ = arg minc∈C
∑n

i=1 (αci − yi log ci) .

Alternatively, to avoid the curvature and nonlinearity of the log term, a

normalized squared error between c and the rescaled observations can be

considered:

x̂ = arg minc∈C
∥∥c − 1

αy
∥∥2

2 .

See our arXiv preprint [4] for further theoretical results.

Theorem (AWGN)

Let x̂ denote the output of the compression-based denoiser defined by (f, g) as
in (1). Then,

1√
n

‖x − x̂‖2 ≤
√

δ + 2σz

√
(2 ln 2)R

n
(1 + 2√

η),

with a probability larger than 1 − 2−ηR+2.

Corollary (Sparse Signals)

Exists a family of compression codes such that, when used with the denoiser

defined in (1), the estimate x̂ satisfies

1
nσ2

z

‖x̂ − x‖2
2 ≤ C · k log2 n

n
+ γn,

with probability at least 1 − 4
(kn3k/2)η . Here, γn = o(1) and C = 4 ln 2(1 + 2√

η)2.

Denoising via Neural Compression

Labeled training data expensive/unavailable → supervised training not viable

Self-/unsupervised → only noisy data, but need many samples

Zero-shot denoiser: learns from a single noisy observation

Zero-shot Neural Compression Denoiser (ZS-NCD) is trained to minimize:

min
(θ1,θ2)

∑
(i,j)∈I

(
LK(gθ2(fθ1(P(i,j)(y))), P(i,j)(y)) − λ log P

(
fθ1(P(i,j)(y))

))
,

P
(
fθ1(P(i,j)(y))

)
: entropy model of the latent code

P(i,j) : Rh×w → Rk×k: the patch extraction operator.

λ: paremter controlling trade-off between fidelity and compressibility.

I(i,j) ⊂ I : the set of locations P(i′,j′) includes (i, j):

x̂(i,j) = 1
|I(i,j)|

∑
(i′,j′)∈I(i,j)

gθ2(fθ1(P(i′,j′)(y)))
∣∣
(i−i′,j−j′) .

Experimental Results
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DIP: Deep Image Prior, DD: Deep Decoder, S2S: Self2Self, ZS-{N2S, N2N,

NCD}: Zers-shot {Noise2Self, Noise2Noise, Neural Compression Denoiser}

Noisy Image Noisy (20.18 / 0.5408) Ground Truth (∞ / 1.0) Restormer (31.44 / 0.9218)

JPEG2K (25.55 / 0.7728) BM3D (27.56 / 0.8236) DIP (26.40 / 0.7875) DD (25.97 / 0.7902)

S2S (19.02 / 0.5867) ZS-N2S (20.70 / 0.6776) ZS-N2N (27.66 / 0.8231) ZS-NCD (28.81 / 0.8615)

Noise Param. AWGN, N (0, σ2) Poisson, Poisson(αx)/α

σ or α Method Set11 Set13 Kodak24 Set11 Set13 Kodak24

15

JPEG2K 27.45 / 0.7699 26.69 / 0.7543 27.86 / 0.7457 22.35 / 0.5882 21.76 / 0.5494 22.56 / 0.5249

BM3D 32.22 / 0.8992 31.15 / 0.8808 32.37 / 0.8754 26.66 / 0.7505 25.64 / 0.6912 27.04 / 0.6900

DIP 29.11 / 0.7990 30.31 / 0.8570 31.42 / 0.8454 23.69 / 0.5863 25.14 / 0.6916 26.37 / 0.6761

DD 28.83 / 0.8215 29.22 / 0.8371 28.71 / 0.8016 24.37 / 0.6629 24.96 / 0.7006 25.59 / 0.6679

S2S 26.81 / 0.8158 20.61 / 0.6879 23.08 / 0.7695 21.75 / 0.6872 19.23 / 0.6553 22.52 / 0.7418

ZS-N2S 28.92 / 0.8495 18.18 / 0.5690 18.68 / 0.5540 25.06 / 0.7051 21.23 / 0.6066 22.24 / 0.6170

ZS-N2N 30.01 / 0.8169 30.95 / 0.8701 32.30 / 0.8650 24.04 / 0.5766 25.37 / 0.6878 26.80 / 0.6757

ZS-NCD 31.35 / 0.8580 31.93 / 0.8983 33.18 / 0.9026 25.65 / 0.7132 26.44 / 0.7434 27.64 / 0.7432

50

JPEG2K 22.05 / 0.5794 21.43 / 0.5295 22.17 / 0.5055 24.77 / 0.6811 24.25 / 0.6696 25.52 / 0.6608

BM3D 28.25 / 0.8049 25.78 / 0.7134 27.06 / 0.7047 23.09 / 0.5787 23.00 / 0.6281 24.49 / 0.6008

DIP 23.46 / 0.5783 24.82 / 0.6748 25.90 / 0.6494 26.30 / 0.7004 27.72 / 0.7845 29.12 / 0.7845

DD 24.01 / 0.6584 24.56 / 0.6779 24.98 / 0.6413 26.87 / 0.7455 27.43 / 0.7867 27.71 / 0.7543

S2S 17.41 / 0.5200 14.21 / 0.3938 17.00 / 0.5325 25.70 / 0.7896 21.75 / 0.7365 23.88 / 0.8014

ZS-N2S 24.74 / 0.6883 20.62 / 0.5880 20.05 / 0.5774 27.08 / 0.7855 20.75 / 0.6033 20.25 / 0.5993

ZS-N2N 23.52 / 0.5457 24.67 / 0.6444 25.82 / 0.6151 27.26 / 0.7216 28.57 / 0.8112 30.13 / 0.8076

ZS-NCD 25.58 / 0.7144 25.87 / 0.7269 27.89 / 0.7464 28.44 / 0.7914 29.09 / 0.8223 30.60 / 0.8235

Acknowledgment. A.Z., X.C., S.J. were supported by NSF CCF-2237538.
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Denoising Problem

• Signal of interest: x = (x1, . . . , xn) ∈ Rn
+

• Observations: y = (y1, . . . , yn)

◦ conditionally independent given x

y ∼
n∏

i=1

p(yi | xi).

Denoising problem: Estimate x from noisy observation y .

• Key ingredient: Using the source structure
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Denoising: An old problem, new challenges

• Denoising has a long history with a wide range of approaches

• Mature field under standard setting: Gaussian noise in natural
images is well-understood

• Emerging imaging applications introduce non-traditional sources and
non-standard noise models, requiring fresh solutions

NLM [Buades et al. 2005], BM3D [Dabov et al. 2007], DnCNN [Zhang et al. 2016],

Restormer [Zamir et al. 2022], DIP [Ulyanov et al. 2017], Deep Decoder [Heckel et

al. 2018], Noise2Void [Krull et al. 2019], Noise2Score [Kim et al. 2021], . . .
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Compression-based Denoising

• Clean signal x is structured, and compressible

• Compression-based denoising idea:

Lossy compression of noisy signal at a distortion
level adjusted based on noise power

≡ denoising

• Key theoretical works on compression-based denoising:

◦ Minimum Kolmogorov Complexity Estimator [Donoho, 2002]

◦ Universal denoising of discrete-valued sources [Weissman et al., 2005]:
universal lossy compression followed by suitable post-processing

• Despite strong theoretical foundations, existing compression-based
denoising methods i) often yield sub-optimal results in practice, 2)
require access to pre-defined compression codes.
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Our contribution

• Inspired by the recent success of neural compression methods, we
introduce DeCompress:

◦ a novel compression-based denoising method

• Key features of DeCompress:

◦ Unsupervised: does not require clean-noisy image pairs for training

◦ Data-efficient: Can operate with access to limited training data (only
a single noisy image)

◦ High-performance: Achieves state-of-the-art performance among
zero-shot denoisers (for both Gaussian and Poisson noise)
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DeCompress: Training phase

Step 1. Overlapping patches (e.g. 8× 8 ) are extracted from a noisy
image.

Step 2. A neural compression network is trained on extracted noisy
patches.
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DeCompress: Denoising phase

1. Extract overlapping patches from test image (torch.nn.Unfold).

2. Compress the batch of patches using the trained neural compressor
(in parallel).

3. Combine and average all patches to reconstruct the denoised image
(torch.nn.Fold).
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DeCompress variants

Two neural compression networks are trained for denoising without
access to the ground-truth.

DeCompress (BSD400)

A set of 400 grayscale images of size
180× 180 .

DeCompress (single)

An image from Imagenet
validation set.
(ILSVRC2012_val_00000059.png)
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Denoising peroformance comparison

Denoising performance on Set11 images.

σ = 15 σ = 25 σ = 50

noisy image 24.61 20.18 14.16

BM3D 32.20 29.76 26.51
JPEG2K 27.39 24.91 22.07
Deep Decoder 27.49 25.74 23.34
Noise2Void 26.88 24.77 19.88
DeCompress (single) 29.67 27.24 24.41
DeCompress (BSD400) 30.15 27.64 24.90
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DeCompress: Sample visual comparison

Full Image Noisy 20.15 BM3D 29.09 JP2K 24.04

DeepDecoder 26.22 Noise2Void 25.22 DeCompress (Single) 27.30 DeCompress (BSD400) 28.13
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Key takeaways & future directions

• Neural-compression-based denoising
provides an effective denoising solution,
especially in applications with little or no
training data.

• Opens a new research direction: Exploring
application of neural compression methods
in solving extensive inverse problems. Zero-shot Denoising via

Neural Compression:
arXiv:2506.12693
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Backup slides

A set of extra slides on zero-shot denoising via neural compression.

14



Effect of λ on denoising performance
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Effect of averaging

• Patch size: 8× 8 .
• PSNR achieved with only keeping single compressed pixel (no

averaging).
Noisy Parrot (20.15 dB)

DeCompress (28.15 dB)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

23.32 24.35 24.67 24.82 24.74 24.64 24.48 23.09

24.64 25.45 25.71 25.60 25.80 25.60 25.36 24.43

24.61 25.37 25.71 25.82 25.90 25.65 25.42 24.68

24.60 25.45 25.75 25.90 25.80 25.64 25.48 24.72

24.70 25.50 25.80 25.78 25.79 25.78 25.67 24.74

24.53 25.52 25.77 25.80 25.84 25.71 25.59 24.73

24.32 25.26 25.55 25.62 25.66 25.61 25.29 24.47

23.11 24.33 24.71 24.73 24.77 24.78 24.49 23.31

23.5

24.0

24.5

25.0

25.5
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Zero-shot Denoising via Neural Compression

Let Q ⊂ Rn denote the signal class of interest, such as vectorized
natural images of a fixed size. A lossy compression code for Q is defined
by an encoder-decoder pair (f , g) , f : Q → {1, . . . , 2R} , and
g : {1, . . . , 2R} → Rn characterized by: i) Rate R , and ii) Distortion δ :

δ = sup
x∈Q

1

n‖x − g(f (x))‖22.

The set of reconstructions forms the codebook:

C = {g(i) : i = 1, . . . , 2R} ⊂ Rn.
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Zero-shot Denoising via Neural Compression - Cont’d

We propose compression-based denoising as a structured max-
imum likelihood (ML) estimation. Given y and a lossy com-
pression code (f , g) for Q , the compression-based ML denoiser
solves

x̂ = arg min
c∈C

L(c; y),

where L(c; y) := −
∑n

i=1 log p(yi | ci) .

• Clean signals are more compressible than their noisy counterparts,
by virtue of their structure.

• The most likely codeword from a clean-signal codebook naturally
performs denoising.
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Zero-shot Denoising via Neural Compression - Cont’d

1. AWGN. y = x + z , where z ∼ N (0, σ2
z In) ,

x̂ = arg minc∈C ‖y − c‖22. (1)

Denoising by projecting the noisy observation onto the nearest
codeword.

2. Poisson noise. yi ∼ Poisson(αxi) (low-light and photon-limited
imaging scenarios)

x̂ = arg minc∈C
∑n

i=1 (αci − yi log ci) . (2)
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Theoretical findings

Theorem (AWGN)

Assume that x ∈ Q and let (f , g) denote a lossy compression
for Q that operates at rate R and distortion δ . Consider y =

x + z , where z ∼ N (0, σ2
z In) . Let x̂ denote the output of the

compression-based denoiser defined by (f , g) as in (1). Then,

1√
n
‖x − x̂‖2 ≤

√
δ + 2σz

√
(2 ln 2)R

n (1 + 2
√
η),

with a probability larger than 1− 2−ηR+2 .
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Theoretical findings - Cont’d

Corollary (Sparse Signals)

Let Qn denote the set of k -sparse vectors in Rn satisfying ‖x‖2 ≤
1 . Fix a parameter η ∈ (0, 1) , and suppose y = x + z where
z ∼ N (0, σ2

z In) . Then, there exists a family of compression codes
such that, when used with the denoiser defined in (1), the estimate
x̂ satisfies

1

nσ2
z
‖x̂ − x‖22 ≤ C · k log2 n

n + γn,

with probability at least 1 − 4
(kn3k/2)η

. Here, γn = o(1) and C =

4 ln 2(1 + 2
√
η)2 .
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Theoretical findings - Cont’d

Theorem (Poisson)

Assume that x ∈ Q and let (f , g) denote a lossy compression
for Q that operates at rate R and distortion δ . Assume that for
any x ∈ Q , xi ∈ (xmin, xmax) , where 0 < xmin < xmax < 1 .
Assume that y1, . . . , yn are independent with yi ∼ Poisson(αxi) .
Let x̂ denote the solution of (2). Let C1 = x5

max/(x2
min) and

C2 =
x2

max
x3

min
β
√

( 4
ln 2)(

√
1 + η+

√
η) . Then, with a probability larger

than 1− 2−ηR+2 ,

1

n‖x − x̂‖22 ≤ C1δ + C2

√
R
nα. (3)
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