DeCompress: Denoising via Neural Compression

Learn to Compress & Compress to Learn Workshop, 2025

Ali Zafari* Xi Chen* Shirin Jalali

Department of Electrical and Computer Engineering Rutgers University

Pre-presentation: Beyond DeCompress

- Extended algorithm and theoretical insights:
 - Zero-shot Denoising via Neural Compression: arXiv:2506.12693

Happy to chat - stop by our poster ↓

1

Denoising Problem

Compression-based denoising

Denoising via Neural Compression

Final Remarks

Denoising Problem

- Signal of interest: $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n_+$
- Observations: $\mathbf{y} = (y_1, \dots, y_n)$
 - \circ conditionally independent given x

$$\mathbf{y} \sim \prod_{i=1}^n p(y_i \mid x_i).$$

Denoising Problem

- Signal of interest: $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n_+$
- Observations: $\mathbf{y} = (y_1, \dots, y_n)$

 \circ conditionally independent given x

$$\boldsymbol{y} \sim \prod_{i=1}^n p(y_i \mid x_i).$$

Denoising problem: Estimate x from noisy observation y.

• Key ingredient: Using the source structure

Denoising: An old problem, new challenges

- Denoising has a long history with a wide range of approaches
- Mature field under standard setting: Gaussian noise in natural images is well-understood
- Emerging imaging applications introduce non-traditional sources and non-standard noise models, requiring fresh solutions

NLM [Buades et al. 2005], BM3D [Dabov et al. 2007], DnCNN [Zhang et al. 2016], Restormer [Zamir et al. 2022], DIP [Ulyanov et al. 2017], Deep Decoder [Heckel et al. 2018], Noise2Void [Krull et al. 2019], Noise2Score [Kim et al. 2021], ...

Compression-based Denoising

- Clean signal x is structured, and compressible
- Compression-based denoising idea:

Lossy compression of noisy signal at a distortion \equiv denoising level adjusted based on noise power

Compression-based Denoising

- Clean signal x is structured, and compressible
- Compression-based denoising idea:
- Key theoretical works on compression-based denoising:
 - Minimum Kolmogorov Complexity Estimator [Donoho, 2002]
 - Universal denoising of discrete-valued sources [Weissman et al., 2005]: universal lossy compression followed by suitable post-processing

Compression-based Denoising

- Clean signal x is structured, and compressible
- Compression-based denoising idea:
- Key theoretical works on compression-based denoising:
 - Minimum Kolmogorov Complexity Estimator [Donoho, 2002]
 - Universal denoising of discrete-valued sources [Weissman et al., 2005]: universal lossy compression followed by suitable post-processing
- Despite strong theoretical foundations, existing compression-based denoising methods i) often yield sub-optimal results in practice, 2) require access to pre-defined compression codes.

Our contribution

- Inspired by the recent success of neural compression methods, we introduce DeCompress:
 - o a novel compression-based denoising method
- Key features of DeCompress:
 - Unsupervised: does not require clean-noisy image pairs for training
 - Data-efficient: Can operate with access to limited training data (only a single noisy image)
 - High-performance: Achieves state-of-the-art performance among zero-shot denoisers (for both Gaussian and Poisson noise)

DeCompress: Training phase

Step 1. Overlapping patches (e.g. 8×8) are extracted from a noisy image.

Step 2. A neural compression network is trained on extracted noisy patches.

DeCompress: Denoising phase

- 1. Extract overlapping patches from test image (torch.nn.Unfold).
- 2. Compress the batch of patches using the trained neural compressor (in parallel).
- Combine and average all patches to reconstruct the denoised image (torch.nn.Fold).

DeCompress variants

Two neural compression networks are trained for denoising without access to the ground-truth.

DeCompress (BSD400)

A set of 400 grayscale images of size 180×180 .

DeCompress (single)

An image from *Imagenet* validation set. (ILSVRC2012_val_00000059.png)

Denoising peroformance comparison

Denoising performance on Set11 images.

	$\sigma = 15$	$\sigma = 25$	$\sigma = 50$
noisy image	24.61	20.18	14.16
BM3D	32.20	29.76	26.51
JPEG2K	27.39	24.91	22.07
Deep Decoder	27.49	25.74	23.34
Noise2Void	26.88	24.77	19.88
DeCompress (single)	29.67	27.24	24.41
DeCompress (BSD400)	30.15	27.64	24.90

DeCompress: Sample visual comparison

Key takeaways & future directions

- Neural-compression-based denoising provides an effective denoising solution, especially in applications with little or no training data.
- Opens a new research direction: Exploring application of neural compression methods in solving extensive inverse problems.

Zero-shot Denoising via Neural Compression: arXiv:2506.12693

Donoho, David Leigh [2002]. *The kolmogorov sampler*. Department of Statistics, Stanford University.

Weissman, Tsachy and Ordentlich, Erik [2005]. "The empirical distribution of rate-constrained source codes". In: *IEEE transactions on information theory*.

A set of extra slides on zero-shot denoising via neural compression.

Effect of λ on denoising performance

Effect of averaging

- Patch size: 8×8 .
- PSNR achieved with only keeping single compressed pixel (no averaging).

Noisy Parrot (20.15 dB)

DeCompress (28.15 dB)

1		24.35	24.67	24.82	24.74	24.64	24.48	23.09	
2	24.64	25.45	25.71	25.60	25.80	25.60	25.36	24.43	- 25.
3		25.37	25.71	25.82	25.90	25.65	25.42	24.68	- 25)
4		25.45	25.75	25.90	25.80	25.64	25.48		- 24
5		25.50	25.80	25.78	25.79	25.78	25.67		- 24-
6		25.52	25.77	25.80	25.84	25.71	25.59		- 24)
7		25.26	25.55	25.62	25.66	25.61	25.29		- 23.
8									
	1	2	3	4	5	6	7	8	

Zero-shot Denoising via Neural Compression

Let $Q \subset \mathbb{R}^n$ denote the signal class of interest, such as vectorized natural images of a fixed size. A lossy compression code for Q is defined by an encoder-decoder pair (f,g), $f : Q \to \{1, \ldots, 2^R\}$, and $g : \{1, \ldots, 2^R\} \to \mathbb{R}^n$ characterized by: i) *Rate* R, and ii) *Distortion* δ :

$$\delta = \sup_{\mathbf{x}\in\mathcal{Q}} \frac{1}{n} \|\mathbf{x} - \mathbf{g}(f(\mathbf{x}))\|_2^2.$$

The set of reconstructions forms the codebook:

$$\mathcal{C} = \{ g(i) : i = 1, \dots, 2^R \} \subset \mathbb{R}^n.$$

We propose compression-based denoising as a structured maximum likelihood (ML) estimation. Given y and a lossy compression code (f, g) for Q, the compression-based ML denoiser solves

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{c}\in\mathcal{C}}\mathcal{L}(\boldsymbol{c};\boldsymbol{y}),$$

where
$$\mathcal{L}(\mathbf{c}; \mathbf{y}) := -\sum_{i=1}^{n} \log p(y_i \mid c_i)$$
.

- Clean signals are more compressible than their noisy counterparts, by virtue of their structure.
- The most likely codeword from a clean-signal codebook naturally performs denoising.

Zero-shot Denoising via Neural Compression - Cont'd

1. AWGN.
$$\mathbf{y} = \mathbf{x} + \mathbf{z}$$
, where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{z}}^2 I_n)$,

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{c}\in\mathcal{C}} \|\boldsymbol{y} - \boldsymbol{c}\|_2^2.$$
(1)

Denoising by projecting the noisy observation onto the nearest codeword.

2. Poisson noise. $y_i \sim \text{Poisson}(\alpha x_i)$ (low-light and photon-limited imaging scenarios)

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{c}\in\mathcal{C}}\sum_{i=1}^{n}\left(\alpha \boldsymbol{c}_{i} - \boldsymbol{y}_{i}\log\boldsymbol{c}_{i}\right).$$
(2)

Theoretical findings

Theorem (AWGN)

Assume that $\mathbf{x} \in \mathcal{Q}$ and let (f,g) denote a lossy compression for \mathcal{Q} that operates at rate R and distortion δ . Consider $\mathbf{y} = \mathbf{x} + \mathbf{z}$, where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma_z^2 \mathbf{I}_n)$. Let $\hat{\mathbf{x}}$ denote the output of the compression-based denoiser defined by (f,g) as in (1). Then,

$$\frac{1}{\sqrt{n}} \| \mathbf{x} - \hat{\mathbf{x}} \|_2 \le \sqrt{\delta} + 2\sigma_z \sqrt{\frac{(2\ln 2)R}{n}} (1 + 2\sqrt{\eta}),$$

with a probability larger than $1 - 2^{-\eta R + 2}$.

Theoretical findings - Cont'd

Corollary (Sparse Signals)

Let Q_n denote the set of k-sparse vectors in \mathbb{R}^n satisfying $||\mathbf{x}||_2 \leq 1$. Fix a parameter $\eta \in (0,1)$, and suppose $\mathbf{y} = \mathbf{x} + \mathbf{z}$ where $\mathbf{z} \sim \mathcal{N}(0, \sigma_z^2 \mathbf{I}_n)$. Then, there exists a family of compression codes such that, when used with the denoiser defined in (1), the estimate $\hat{\mathbf{x}}$ satisfies

$$\frac{1}{n\sigma_z^2}\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|_2^2 \leq C \cdot \frac{k\log_2 n}{n} + \gamma_n,$$

with probability at least $1 - \frac{4}{(kn^{3k/2})^{\eta}}$. Here, $\gamma_n = o(1)$ and $C = 4 \ln 2(1 + 2\sqrt{\eta})^2$.

Theoretical findings - Cont'd

Theorem (Poisson)

Assume that $\mathbf{x} \in \mathcal{Q}$ and let (f,g) denote a lossy compression for \mathcal{Q} that operates at rate R and distortion δ . Assume that for any $\mathbf{x} \in \mathcal{Q}$, $x_i \in (x_{\min}, x_{\max})$, where $0 < x_{\min} < x_{\max} < 1$. Assume that y_1, \ldots, y_n are independent with $y_i \sim \operatorname{Poisson}(\alpha x_i)$. Let $\hat{\mathbf{x}}$ denote the solution of (2). Let $C_1 = x_{\max}^5 / (x_{\min}^2)$ and $C_2 = \frac{x_{\max}^2}{x_{\min}^3} \beta \sqrt{(\frac{4}{\ln 2})} (\sqrt{1+\eta} + \sqrt{\eta})$. Then, with a probability larger than $1 - 2^{-\eta R+2}$,

$$\frac{1}{n} \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|_2^2 \le C_1 \delta + C_2 \sqrt{\frac{R}{n\alpha}}.$$
(3)