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Pre-presentation: Beyond DeCompress

e Extended algorithm and theoretical insights:
o Zero-shot Denoising via Neural Compression: arXiv:2506.12693

e Happy to chat - stop by our poster |}
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Denoising Problem

e Signal of interest: x = (xi,...,x,) € R

e Observations: y = (y1,...,¥n)

o conditionally independent given x
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Denoising problem: Estimate x from noisy observation y.

e Key ingredient: Using the source structure



Denoising: An old problem, new challenges

e Denoising has a long history with a wide range of approaches

e Mature field under standard setting: Gaussian noise in natural
images is well-understood

e Emerging imaging applications introduce non-traditional sources and
non-standard noise models, requiring fresh solutions

NLM [Buades et al. 2005], BM3D [Dabov et al. 2007], DnCNN [Zhang et al. 2016],
Restormer [Zamir et al. 2022], DIP [Ulyanov et al. 2017], Deep Decoder [Heckel et
al. 2018], Noise2Void [Krull et al. 2019], Noise2Score [Kim et al. 2021], ...



Compression-based Denoising

e Clean signal x is structured, and compressible

e Compression-based denoising idea:

Lossy compression of noisy signal at a distortion
level adjusted based on noise power
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e Key theoretical works on compression-based denoising:
o Minimum Kolmogorov Complexity Estimator [Donoho, 2002]

o Universal denoising of discrete-valued sources [Weissman et al., 2005]:
universal lossy compression followed by suitable post-processing



Compression-based Denoising

e Clean signal x is structured, and compressible

e Compression-based denoising idea:

Lossy compression of noisy signal at a distortion

level adjusted based on noise power

denoising
e Key theoretical works on compression-based denoising:

o Minimum Kolmogorov Complexity Estimator [Donoho, 2002]

o Universal denoising of discrete-valued sources [Weissman et al., 2005]:
universal lossy compression followed by suitable post-processing

e Despite strong theoretical foundations, existing compression-based

denoising methods i) often yield sub-optimal results in practice, 2)
require access to pre-defined compression codes.



Our

contribution

Inspired by the recent success of neural compression methods, we
introduce DeCompress:

o a novel compression-based denoising method

Key features of DeCompress:

o Unsupervised: does not require clean-noisy image pairs for training
o Data-efficient: Can operate with access to limited training data (only
a single noisy image)

o High-performance: Achieves state-of-the-art performance among
zero-shot denoisers (for both Gaussian and Poisson noise)



DeCompress: Training phase

Step 1. Overlapping patches (e.g. 8 x 8) are extracted from a noisy

image.

Step 2. A neural compression network is trained on extracted noisy

patches.

set of overlapping patches as set of overlapping patches as
input for training: P(; ;) (y) N target for training: P(; ;) (y)
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DeCompress: Denoising phase
1. Extract overlapping patches from test image (torch.nn.Unfold).

2. Compress the batch of patches using the trained neural compressor

(in parallel).

3. Combine and average all patches to reconstruct the denoised image

(torch.nn.Fold).

test noisy image: ¥
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DeCompress variants

Two neural compression networks are trained for denoising without
access to the ground-truth.

DeCompress (BSD400) DeCompress (single)

An image from Imagenet
validation set.
180 x 180. (ILSVRC2012_val_00000059.png)

A set of 400 grayscale images of size



Denoising peroformance comparison

Denoising performance on Setl1l images.

noisy image \ 24.61 \ 20.18 | 14.16
BM3D 32.20 | 29.76 | 26.51
JPEG2K 27.39 | 2491 22.07
Deep Decoder 27.49 25.74 23.34
Noise2Void 26.88 | 24.77 19.88
DeCompress (single) 20.67 | 27.24 | 2441
DeCompress (BSD400) | 30.15 | 27.64 | 24.90
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DeCompress: Sample visual comparison

Full Image Noisy 20.15 BM3D 29.09
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JP2K 24.04
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Key takeaways & future directions

e Neural-compression-based denoising
provides an effective denoising solution,
especially in applications with little or no
training data.

e Opens a new research direction: Exploring
application of neural compression methods
in solving extensive inverse problems.

Zero-shot Denoising via
Neural Compression:
arXiv:2506.12693
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Backup slides

A set of extra slides on zero-shot denoising via neural compression.
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Effect of A on denoising performance

PSNR [dB]
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Effect of averaging

e Patch size: 8 x 8.

e PSNR achieved with only keeping single compressed pixel (no

averaging).
Noisy Parrot (20.15 dB)

24.71
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Zero-shot Denoising via Neural Compression

Let Q C R" denote the signal class of interest, such as vectorized
natural images of a fixed size. A lossy compression code for Q is defined
by an encoder-decoder pair (f,g), f: Q — {1,...,2R} and
g:{1,...,2R} — R" characterized by: i) Rate R, and ii) Distortion §:

1
§ = sup —||x — g(f(x))|3.
xeQ N

The set of reconstructions forms the codebook:

C={gli):i=1,....2Ry cR".
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Zero-shot Denoising via Neural Compression - Cont'd

We propose compression-based denoising as a structured max-
imum likelihood (ML) estimation. Given y and a lossy com-
pression code (f, g) for Q, the compression-based ML denoiser
solves

- Ll

X = argmin £(c; y),

where L(c;y) := =31, logp(y; | ci).
e Clean signals are more compressible than their noisy counterparts,

by virtue of their structure.

e The most likely codeword from a clean-signal codebook naturally
performs denoising.
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Zero-shot Denoising via Neural Compression - Cont'd

1. AWGN. y = x + z, where z ~ N(0,021,),
X = argmineec |ly — cl|3. (1)

Denoising by projecting the noisy observation onto the nearest
codeword.

2. Poisson noise. y; ~ Poisson(ax;) (low-light and photon-limited
imaging scenarios)

x = argmineec » ;1 (aci — yilog¢). (2)
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Theoretical findings

Theorem (AWGN)

Assume that x € Q and let (f,g) denote a lossy compression
for Q that operates at rate R and distortion §. Consider y =
x + z, where z ~ N(0,02l,). Let x denote the output of the
compression-based denoiser defined by (f,g) as in (1). Then,

1 . (2In2)R
N — <
Jrlx =2 < V6 + 20, (14 2y/),

with a probability larger than 1 — 27 1R+2

20



Theoretical findings - Cont'd

Corollary (Sparse Signals)

Let Q, denote the set of k-sparse vectors in R" satisfying ||x||2 <
1. Fix a parameter n € (0,1), and suppose y = x + z where
z ~ N(0,021,). Then, there exists a family of compression codes
such that, when used with the denoiser defined in (1), the estimate
X satisfies

I = x|[3 < C-

ns

klogy n
no? n
with probability at least 1 — W. Here, v, = o(1) and C =
41n2(142,/7)2.




Theoretical findings - Cont'd

Theorem (Poisson)

Assume that x € Q and let (f,g) denote a lossy compression
for Q that operates at rate R and distortion §. Assume that for
any x € Q, X; € (Xmin, Xmax), Where 0 < Xmin < Xmax < 1.
Assume that y1,...,y, are independent with y; ~ Poisson(ax;) .
Let x denote the solution of (2). Let Ci = xp../(x2..) and
x2 4 . .
Co = 5=B1/(n3) (W1 +n+/n). Then, with a probability larger
than 1":n2*’7R+2,

1 A2 R
Zlx — x|2 < C16+ Coy | —.
llx = X[z < GO+ Gy (3)
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